On the CHFP Data Archive page, you will find guidance on preparing, serving and using data from the Climate-system Historical Forecast Project. Please read the relevant guide(s) before starting work, and please provide feedback on these web pages to wcrp@wmo.int. Note that these pages are still in an early stage of development, and the data conventions described are still subject to possible change.
CHFP Data Server at CIMA
The CHFP data set is being hosted by the Centro de Investigaciones del Mar y la Atmósfera (CIMA), Argentina. The CHFP dataset is open and free for non-commercial purposes. After registering anyone can obtain the model output.
Please use the following acknowledgment when using CHFP data:
"We acknowledge the WCRP/CLIVAR Working Group on Seasonal to Interannual Prediction (WGSIP) for establishing the Climate-system Historical Forecast Project (CHFP, see Kirtman and Pirani 2009) and the Centro de Investigaciones del Mar y la Atmosfera (CIMA) for providing the model output http://chfps.cima.fcen.uba.ar/. We also thank the data providers for making the model output available through CHFP."
Support documents to archive and retrieve CHFP data
- Guide for data producers (Version 2, March 2013)
- Guide for data servers
- Guide for data users
CHFP netCDF specification:
- CHFP_example
- CHFP_metadata
- CHFP_variable_names
- Example script - data retrieval
Data is provided in netCDF via THREDDS or OpenDAP servers. In most cases aggregation servers are used, and data retrievals from a single data host will typically contain output from multiple models.
It is recommended that participants send CIMA a test file to address any technical issues before transferring the full data set.
CHFP experiments and diagnostic sub-projects
Experiments associated with the CHFP
The fundamental experimental design is to mimic real prediction, in the sense that no “future” information can be used after the forecast is initialized. For example, the PROVOST or DSP experiments would be excluded because they use observed SST as the simulation evolves, whereas the SMIP experiment could be included as subset since no future information is used as the forecast evolves.
Seasonal Prediction Intercomparison Project | ||
Global Land-Atmosphere Coupling Experiment | ||
Global Land-Atmosphere Coupling Experiment 2 | ||
Stratosphere-resolving Historical Forecast Project | ||
Sea Ice Historical Forecast Project |
Potential subjects for diagnostic sub-projects
The following is an abbreviated list of potential sub-projects. It is anticipated that a large number of addition sub-projects will be implemented as the experimental results become available.
- Limit of Predictability Estimates: One potential estimate for the limit of predictability is to determine when a particular forecast probability density function (pdf) is indistinguishable from climatological pdf of the forecasts
- ENSO mechanism diagnostic: Recharge oscillator versus delayed oscillator, role of stochastic forcing, westerly wind events
- impact of the AO on seasonal predictability
- regional predictability
- local land surface predictability
- extreme events
- monsoon predictability
- diurnal cycle in ocean
- diurnal cycle in the atmosphere
- coupled feedbacks
- intra-seasonal oscillations
Submitted sub-projects
Principle investigator | Title | Proposal | Publications |
Eric Guilyardi | Atmosphere feedbacks and ENSO predictability | - |
The diagnostic sub-projects will include extensive interactions with the applications community and the regional panels within CLIVAR, as well as the GEWEX, SPARC and CliC WCRP Projects. These interactions and collaborations are viewed as critical elements of the implementation plan and are strongly encouraged.
Participants are invited to email a brief description of their diagnostic sub-project, not to exceed 1-2 pages in length to wcrp@wmo.int. WGSIP will review proposed sub-projects with a view to maximize collaboration and avoid duplication of effort. See below for a list of potential sub-projects.
CHFP Publications
Srivastava, A., S. Rao, N. Pradhan, P. Pillai, and V. Prasad, 2021: Gain of one-month lead time in seasonal prediction of Indian summer monsoon prediction: comparison of initialization strategies. Theor. Appl. Climatol., 143, 1083-1096, https://doi.org/10.1007/s00704-2020-03470-3.
Hu, Z., A. Kumar, and J. Zhu, 2021: Dominant modes of ensemble mean signal and noise in seasonal forecasts of SST. Clim. Dyn., 56, 1251-1264, https://doi.org/10.1007/s00382-020-05531-9.
Pillai, P., S. Rao, A. Srivastava, D. Ramu, M. Pradhan, and R. Das, 2021: Impact of the Tropical Pacific SST biases on the simulation and prediction of Indian summer monsoon rainfall in CFSv2, ECMWF-System4, and NMME models. Clim. Dyn., 56, 1699-1715, https://doi.org/10.1007/s00382-020-05555-1.
Meehl, G., J. Richter, H. Teng, A. Capotondi, K. Cobb, F. Doblas-Reyes, M. Donat, M. England, J. Fyfe, W. Han, H. Kim, B. Kirtman, Y. Kushnir, N. Lovenduski, M. Mann, W. Merryfield, V. Nieves, K. Pegion, N. Rosenbloom, S. Sanchez, A. Scaife, D. Smith, A. Subramanian, L. Sun, D. Thompson, C. Ummenhofer, and S. Xie, 2021: Initialized Earth System prediction from subseasonal to decadal timescales. Nat. Rev. Earth Env., 2, 340-357, https://doi.org/10.1038/s43017-021-00155-x.
Saurral, R.I, W. Merryfield, M. Tolstykh, W.-S. Lee, F. Doblas-Reyes, J. García-Serrano, F. Massonnet, G. Meehl, and H. Teng, 2021: A data set for intercomparing the transient behavior of dynamical model-based subseasonal to decadal climate predictions. J. Adv. Mod. Earth Sys., 13, e2021MS002570, https://doi.org/10.1029/2021MS002570.
Sannikov, S., N. Sannikova, I. Petrova, and O. Cherepanova, 2021: The forecast of fire impact on Pinus sylvestris renewal in southwestern Siberia. J. Forest. Res., 32, 1911-1919, https://doi.org/10.1007/s11676-020-01260-1.
Pradhan, M., S. Rao, T. Doi, P. Pillai, A. Srivastava, and S. Behera, 2021: Comparison of MMCFS and SINTEX-F2 for seasonal prediction of Indian summer monsoon rainfall. Int. J. Climatol., 41, 6084-6108, https://doi.org/10.1002/joc.7169.
Jain, S., A. A. Scaife, N. Dunstone, D. Smith and S. K. Mishra, 2020: Risk Estimation of Unprecedented Monsoon Rainfall over India using Dynamical Ensemble Simulations. Environ. Res. Lett.,https://doi.org/10.1088/1748-9326/ab7b98.
Tanessong, R.S., T. C. Fotso-Nguemo, A. J. K. Mbienda, G. M. Guenang, A. Tchakoutio Sandjon, S. Kaissassou and D. A. Vondou, 2020: Assessing Climate-system Historical Forecast Project (CHFP) seasonal forecast skill over Central Africa. Theor. Appl. Climatol., https://doi.org/10.1007/s00704-020-03176-6.
Osman, M. and C. S. Vera, 2020: Predictability of extratropical upper-tropospheric circulation in the Southern Hemisphere by its main modes of variability. J. Clim., 33, 1405–1421, https://doi.org/10.1175/JCLI-D-19-0122.1.
Jain, S., A. A. Scaife, and A. K. Mitra, 2019: Skill of Indian summer monsoon rainfall prediction in multiple seasonal prediction systems. Climate Dyn., 52, 5291–5301, https://doi.org/10.1007/s00382-018-4449-z.
Scaife, A. A., L. Ferranti, O. Alves, P. Athanasiadis, J, Baehr, M, Déqué, T. Dippe, N. Dunstone, D. Fereday, R. G. Gudgel, R. J. Greatbatch, L. Hermanson, Y. Imada, S. Jain, A. Kumar, C. MacLachlan, W. Merryfield, W. A. Müller, H. L. Ren, D. M. Smith, Y. Takaya, G. Vecchi and X. Yang, 2019: Tropical rainfall predictions from multiple seasonal forecast systems. Int. J. Climatol., 39, 974-988, https://doi.org/10.1002/joc.5855.
Battisti, D. S., D. J. Vimont and B. P. Kirtman, 2019: 100 years of progress in understanding the dynamics of atmosphere–ocean variability. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://journals.ametsoc.org/doi/10.1175/AMSMONOGRAPHS-D-18-0025.1
Merryfield, W.J., F. J. Doblas‐Reyes, L. Ferranti, J.-H. Jeong, Y. J. Orsolini, R. I. Saurral, A. A. Scaife, M. A. Tolstykh and M. Rixen, 2017: Advancing climate forecasting. Eos, 98, 17–21, https://doi.org/10.1029/2017EO086891.
Gleixner S., N. S. Keenlyside, T. D. Demissie, F. Counillon,Y. Wang and E. Viste E, 2017: Seasonal predictability of Kiremt rainfall in coupled general circulation models. Environ. Res. Lett., 12,114016, https://doi.org/10.1088/1748-9326/aa8cfa.
Tompkins, A. M., M. I. O. D. Zárate, R. I. Saurral, C. Vera, C. Saulo, W. J. Merryfield, M. Sigmond, W.-S. Lee, J. Baehr, A. Braun, A. Butler, M. Déqué, F. J. Doblas‐Reyes, M. Gordon, A. A. Scaife, Y. Imada, M. Ishii, T. Ose, B. Kirtman, A. Kumar, W. A. Müller, A. Pirani, T. Stockdale, M. Rixen, and T. Yasuda, 2017: The Climate-System Historical Forecast Project: Providing open access to seasonal forecast ensembles from centers around the globe. Bull. Amer. Meteor. Soc., 98, 2293–2301, https://doi.org/10.1175/BAMS-D-16-0209.1.
Osman, M., and C. S. Vera, 2017: Climate predictability and prediction skill on seasonal time scales over South America from CHFP models. Climate Dyn., 49, 2365–2383, https://doi.org/10.1007/s00382-016-3444-5.
Butler, A. H., A. Arribas, M. Athanassiadou, J. Baehr, N. Calvo, A. Charlton‐Perez, M. Déqué, D. I. V. Domeisen, K. Fröhlich, H. Hendon, Y. Imada, M. Ishii, M. Iza, A. Y. Karpechko, A. Kumar, C. MacLachlan, W. J. Merryfield, W. A. Müller, A. O'Neill, A. A. Scaife, J. Scinocca, M. Sigmond, T. N. Stockdale, and T. Yasuda, 2016: The climate-system historical forecast project: Do stratosphere-resolving models make better seasonal climate predictions in boreal winter? Quart. J. Roy. Meteor. Soc., 142, 1413–1427, https://doi.org/10.1002/qj.2743.
Osman, M., C. S. Vera, and F. J. Doblas-Reyes, 2016: Predictability of the tropospheric circulation in the Southern Hemisphere from CHFP models. Climate Dyn., 46, 2423–2434, https://doi.org/10.1007/s00382-015-2710-2.
Kirtman, B. and A. Pirani, 2009: The State of the Art of Seasonal Prediction Outcomes and Recommendations from the First World Climate Research Program (WCRP) Workshop on Seasonal Prediction, Bull. Amer. Meteor. Soc., 90, https://doi.org/10.1175/2008BAMS2707.1