

Development of next-generation KIM at KIAPS and recent update

Eun-Hee Lee

Korea Institute of Atmospheric Prediction Systems (KIAPS), Seoul, South Korea

- > Introduction to KIAPS project
- Recent upgrade of global NWP (KMA operation)
- Ongoing research at KIAPS
- > Summary

KIAPS project and KIM model

KIAPS project I [2011~2019] & II [2020~2026]

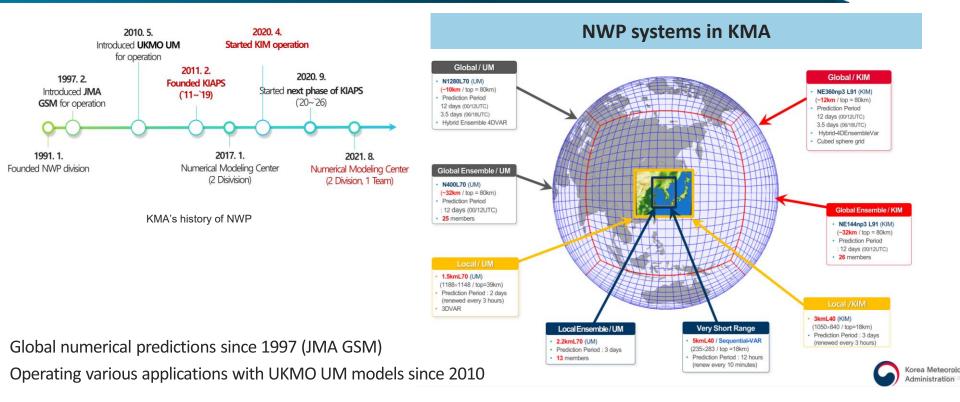
Korean Integrated Model (KIM) → medium-range (10-day), 12km

> Dynamical core (Choi et al., 2018)

Fully compressible Euler **NONHYDROSTATIC** shallow-atmosphere *x-y*: **SPECTRAL ELEMENT METHOD**, **CUBED SPHERE GRID** *z*: finite difference method, Lorenz staggered grid (hybrid-sigma) *t*: 3rd order Lunge-Kutta

Physics (Hong et al., 2018 and many others ..)

Revised RRTMG (RRTMK), Revised Noah-LSM, Scale-aware non-local PBL, Scale-aware mass flux convection KSAS Subgrid orographic GWD, Nonorographic GWD, WSM5, Prognostic/diagnostic CLD


> Data assimilation (Kwon et al., 2018, others..): Hybrid 4D EnVar with LETKF

KIM seamless prediction system from short-range(km-resolution) to sub-seasonal range(4 weeks)

4

Operational Weather Prediction Systems at KMA

NWP systems at KMA (Courtesy to Jongchul Ha)

To begin global NWP support with KIM in 2020 (deterministic/ensemble) Local KIM ~ KIM physics and WRF dynamics

Various applications for the integrated KIM system for very short to extended-range under development in KIAPS II

R2O 2024: KIM4.0

Upgrade in KIM3.9 → 4.0

Enhancement in horizontal resolution

Model resolution from 12 to 8 km with optimization in topography, hyperviscosity

Data assimilation resolution from 32 to 24 km with improved land initialization

Overall improvement in global RMSE & Korean weather

Revised scale-aware parameter in CPS

Targeting gray-zone (less than 10 km) simulation, Modified scale-aware parameter in convective updraft

 reducing exceesive subgrid precipitation and enhancing heavy rain simulation in Asian / Korean domain

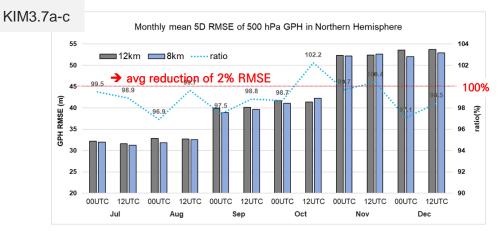
Update in physics

Seaice temperature initialization Update and correction in ozone & aerosol climatology Modification in cloud overlapping RRTMG5.0

Data assimilation, system development

Land initialization: CDF, consistency with physics etc. New grid partitioning, KIM-IO upgrade Speed optimization for components of scientific workflows, code refactoring

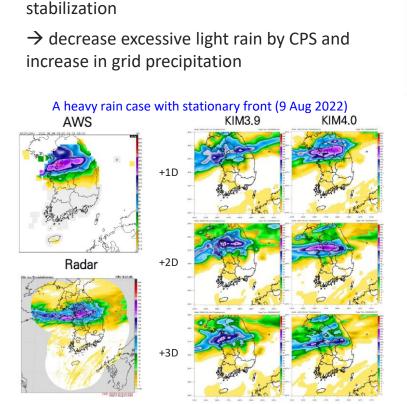
→ The KIM4.0 e-suite was finalized and implementation into operatoin is planned in mid-2025 after parallel running test


History of resolution increase in KIM (25km L50 → 8 km L91)

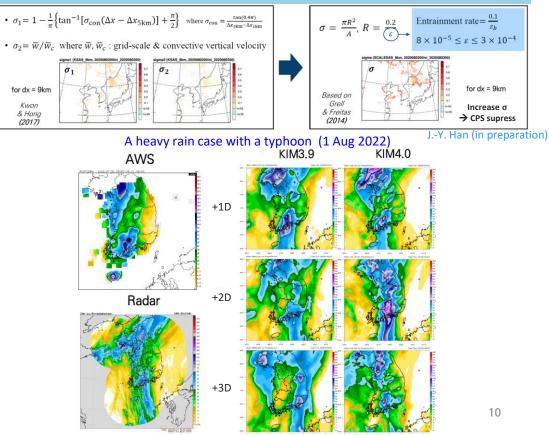
> Resolution update in KIM (2015~current)

KIAPS Version	Release	Horizontal resolution		Vertical levels / model top		Remark	
KIM2.0	July 2015	NE120NP4	~25km	L50 ~50 km		Non-hydrostatic dynamic core with KIM physics package (Hong et al, 2018)	
KIM3.0	April 2017	NE360NP3	~12km				
KIM3.1	Feburary 2018	-		L91	~80 km	CPS sensitivity to dz is fixed (Lee et al, 2019)	
KIM3.7	February 2022	NE576NP3	~8km	-		Scale-aware parameterization modified in KIM4.0 (2024)	

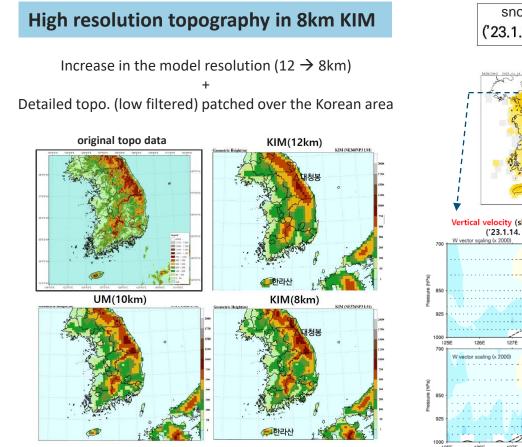
Global RMSE improvement by resolution increase from 12 km to 8 km

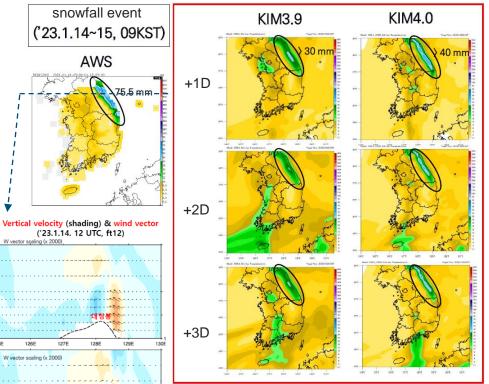

Forecast improvement includes:

- reduced RMSE scores in mid-to high- latitudes
- longer predictabilities for high-impact weathers
 (e.g. 1~2 days for heat wave simulations)
- typhoon simulations


Highlights in KIM4.0 performance: heavy rainfall

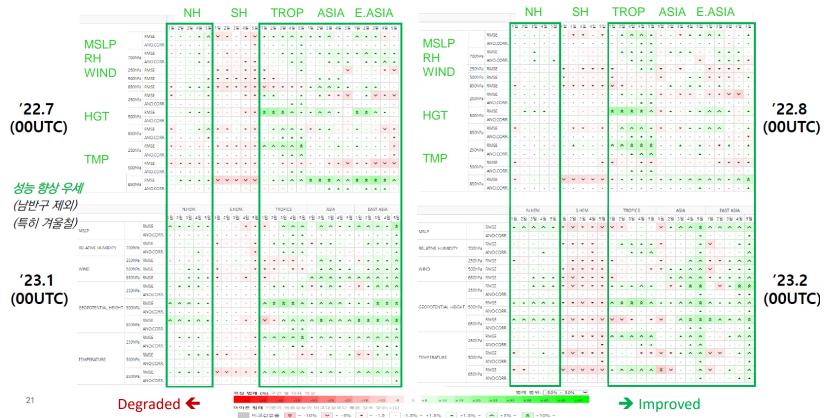
Modified Scale-aware parameter (convective updraft fraction, σ) considering entrainment rate




Reduction in the excessive CPS precipitation and

Highlights in KIM4.0 performance: accuracy in topography

11

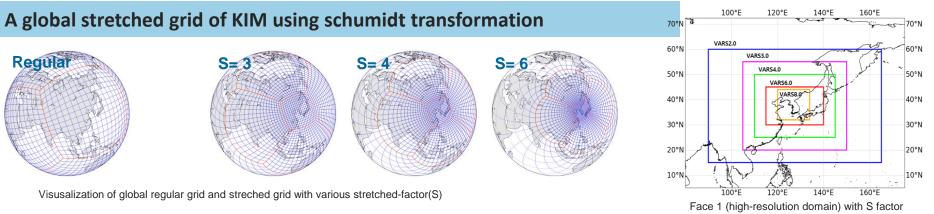

Highlights in KIM4.0 performance: global scores

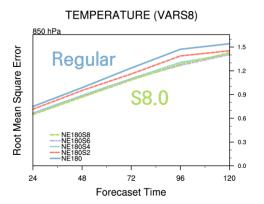
12

Scorecards : KIM4.0 vs KIM3.9

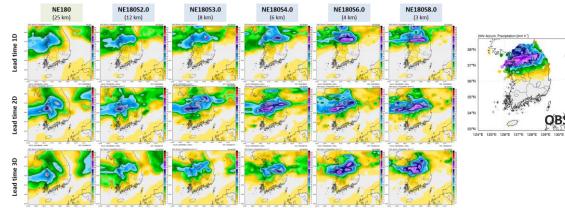
KIM4.0 shows overall improvements in global performance except in the Southern extratropical regions. Related to this physics updates in subgrid orography and cloudiness are planned

Ongoing Research for the next-generation KIM


KIAPS research for the next-generation KIM


Component	Research topics
Data assimilation	Hybrid-4DEnVar for Global model LETKF for Limited Area Model Weakly coupled data assimilation
Dynamics	High resolution dynamics (global uniform grid) Globally variable-resolution model Limited Area Model(LAM) based on KIM variable resolution grid Vertical resolution enhancement, SMoothed vertical Hybrid coordinate (SMH) low-filtered topography, adoptive time step
Physics	Scale-adoptive physics for gray-zone (convection, subgrid-scale orography, gravity wave drag) Microphysics: considering aerosol indirect effect Advanced physics: represent cloud edge effect on radiation, microphysics included graupel and hail Many other physics update to reduce systematic bias of KIM, mass-flux PBL
Coupled modeling	Coupling KIM with NEMO (ocean), SI3 (seaice), Noah-MP (land), WW3 (wave), CaMa-Flood(river) & advancements in components
Ensemble prediction	Adopting model physics perturbation(SPP), currently using SPPT, SPDT, SSST Consistenty in forecast/hindcast Initialization
Framework	Modeling framework and Scientific workflows system development High performance computing: parallelization, memory, input/output(KIM-IO)

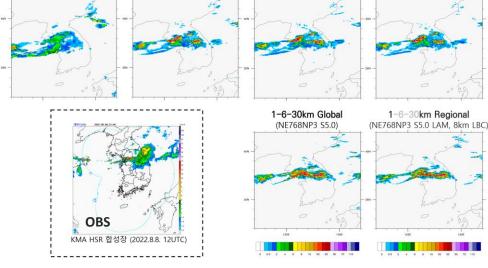
Global variable-resolution grid



Development of DyCore → Idealized test → Real case study with full physics → Scale-aware physics

RMSE of T850 in the Korean domain (Jul 2022)

Heavy rain case simulation (24h prcp, 8 Aug 2022) with various S factor with the base grid NE180 (25 km)


One-way nesting Limited Area Model(LAM)

Key features & progress

Creating limited area grids only on the first face in a cubed-sphere grid The LAM domain adjusted by stretching the cubed-sphere

Progresses so far

- Generation of LAM grids, assignment of lateral boundary grids
- Domain partitioning, Differential operators
- Parallelization, and so on

3km Global

(NE1536NP3)

8km Global

(NE576NP3)

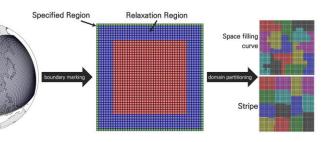
Case simulation with various grid structures and resolutions for a heavy rain case on 8 Aug 2022. 1-h acumulated precipitation (+12h) in comparison with radar observation 16

(a) cubed-sphere grid

(b) stretched cubed-sphere grid

(c) limited area with stretched cubed-sphere arid

Visusalization of global regular, stretched- (variable resolution), and limited area model (LAM) on the cubed-sphere grid


Boundary making and domain partioning in the KIM LAM

3-8-21km Global

(NE576NP3 S2.5)

3-8-21km Regional

(NE576NP3 S2.5 LAM, 8km LBC)

Physics package

Key features in KIM physics package

Scale-aware physics processes

 Convection, gravity wave drag, subgrid-scale orography processes for variable-grid system

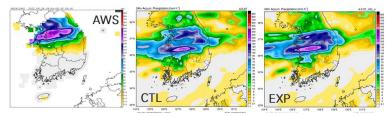
Considering complexity of topography and cloud

Application of subgrid-scale topographic effect and revision in cloud overlapping

Consistency between physics processes

Physics schemes in KIM

-				
Physics process	Scheme			
Radiation (RAD)	RRTMK			
Land surface (LAND)	Revised Noah LSM			
Subgrid-scale orography (SSO)				
Planetary boundary layer (PBL)	Scale-aware YSU			
Gravity wave drag (GWD)	Source-based spectral non-orographic GWD			
Convection (CPS/SCV)	KSAS			
Microphysics (MPS)	Revised WRF single-moment five-class microphysics scheme			
Cloudiness (CLD)	Prognostic CLD			


Major progress in 2024

Updated physics package PHYS24.01

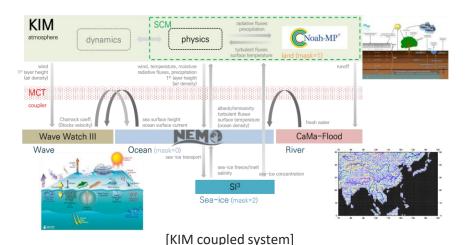
- Development of diagnostic cloudiness scheme for consistency between hydrometeors and cloudiness (Park et al, in preparation)
- Improved global simulatoin with new surface processes especially with subgrid orography (Koo et al, under review in WF)
- Refinement in scale-awareness of physics

Revisions in scale-aware parameterization

- CPS considering different heavy rainfall mechanism over Korea
- Refinement of subgrid-scale orography statistics and turbulent orographic form drag
- Modification in reference-level frontal GWD momentum flux

Improvement in precipitation simulation over South Korea by applying a new method using column-integrated moisture flux convergence

Coupled model development


Key features in KIM coupled system

State-of-the-art surface models

- Inland component: Noah-MP (V5.0), CaMa-Flood (V4.0)
- Marine component: NEMO/SI³ (V4.0), WW3 (V7.13)

Advanced interaction between components

- Physical consistency in parameterization, constant, etc.
- High computational/parallel efficiency

Major progress in 2024

Performance improvement

- Mitigated temperature bias over vegetation and snow
- Ocean vertical mixing w/ wave breaking and turbulence model

Optimization of computational efficiency

- New parallel I/O process in NEMO/SI³
- Parallelization in CaMa-Flood and post-processing

Details in coupled model component and configuration

		Land			Ocean	Sea ice	Wave	River
Model		Noah-MP			NEMO	SI ³	WaveWatch III	CaMa-Flood
Version	current	4.0.1 (2021)	4.4 (2022)	5.0 (2023)	4.0 (4.2.2 in 2025)		7.13	4.0.0 (4.2 in 2025)
	origin	LIS	WRF	GitHub	-		-	-
	latest	5.0			4.2.2		7.14	4.2
Coι	Coupler -		MCT-based					
Initial data		ERA5			ORAS5 (GODAPS)	ERA5/GIOMAS PIOMAS(N.H.)	-	-
Exchan	ange freq. every time step (same with KIM)		1h (fixed; same with radiation)					
Grid s	system	cubed-sphere (same with KIM)		tripolar		(regular) lat-lon	unit-catchment	
Reso	Resolution 100~6 km (NE045~768; same with KIM)		25 km (eORCA025; fixed)		50 km (fixed)	25 km (fixed)		

• continuous version upgrade along with in-house development

Data assimilation

Coupled model

forecast

Atmosphere

[KIM]

Ocean

[NEMO]

Initial

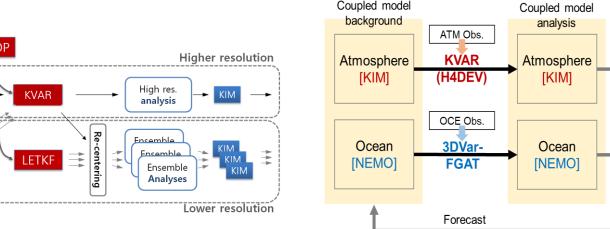
Hybrid-4DEnVar

Flow-dependent background error covariance

- Ensemble forecasts provided by LETKF-based EPS
- ~70 % ensemble background error covariance
- ~30 % static background error covariance

KIM Package for Observation Processing (KPOP)

Observation preprocessing for KVAR and LETKF


Atmosphere-ocean data assimilation

Weakly coupled data assimilation

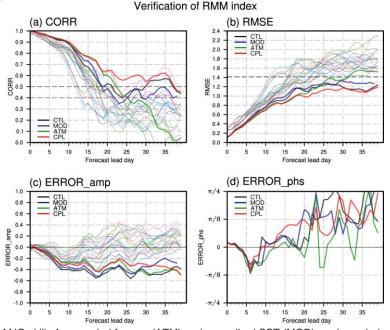
Ocean model: NEMO

Coupled model

- Ocean DA method: NEMOVAR
- KVAR and NEMOVAR use Coupled model background -
- Atmosphere and Ocean DA with the same frequency (6 h)

Observation KPOP High res. Forecast Fnsemble Ensemble Ensemble Forecasts

KIM Ensemble Prediction Systems


KIM global ensemble (10d) is already in operation -> Next-generation KIM EPS focusing extended-range prediction

- Targeting medium-range (~2 week, 24 km, 50 member) & extended-range (~4 week, 32 km, 15 member)
- Couple model (atm/ocean/seaice/wave/land)
- Model uncertainty with currently SPPT, SPDT, SSST and developing SPP
- Considering consisteny of land initialization between forecast and hindcast

Progress in 2024

Beta version development of KIM EPS (atm-only) Hindcast experiments with atm- and cpl- models and evaluation are ongoing

- low resolution (50 km) test
- reanalyses initials
- systematic bias and predictability drivers

MJO skill of uncoupled freerun (ATM) and prescribed SST (MOD), and coupled run (CPL). Initialized on Nov. 1 for 2010-2020.

Thank you