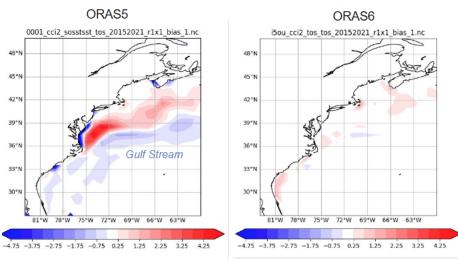
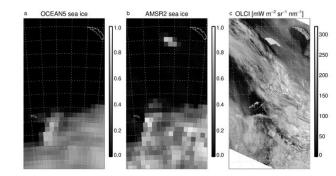

Centre update: ECMWF

Inna Polichtchouk


© ECMWF November 11, 2024

Operational upgrades



Reanalyses

Mean SST biases (2015-2021) Verf. CCIv2 SST

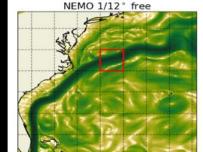
Coupled; all-sky, all surface

Towards high resolution (physical and computational science)

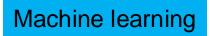
48°N

45°N

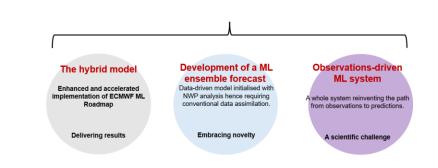
42°N

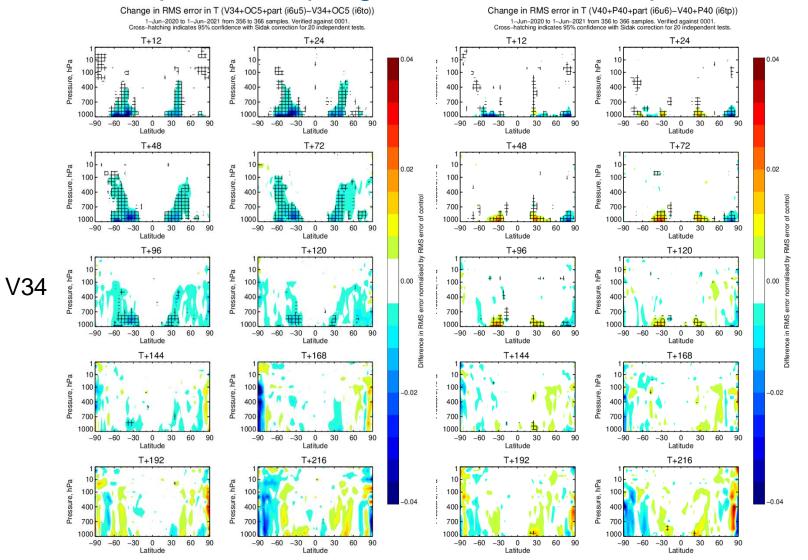

39°N

36° N


33° N

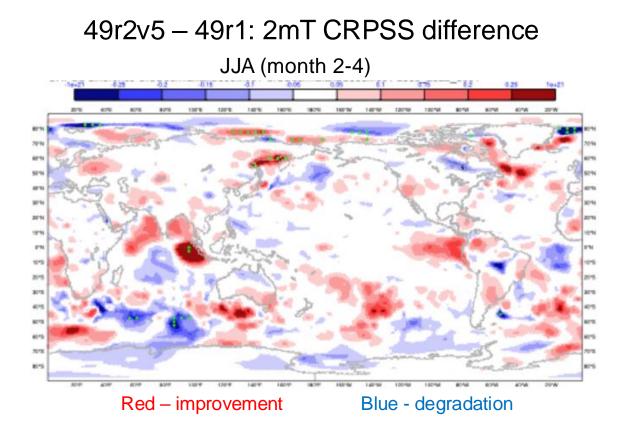
30°N



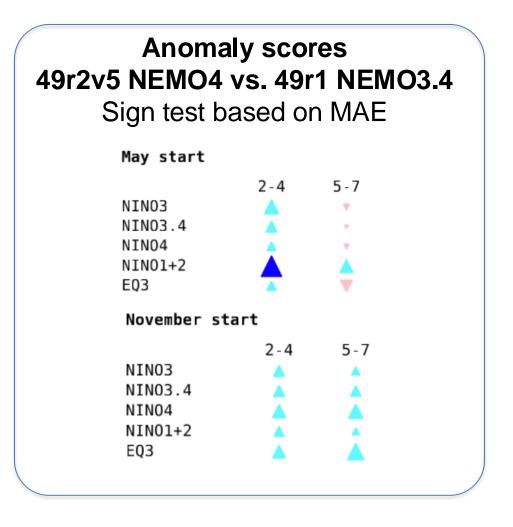

80°W 77.5°W 75°W 72.5°W 70°W 67.5°W 65°W 62.5°

Project overview: different paths towards a ML ensemble prediction at ECMWF

Effect of partial coupling in NEMO V40 compared to NEMO V34

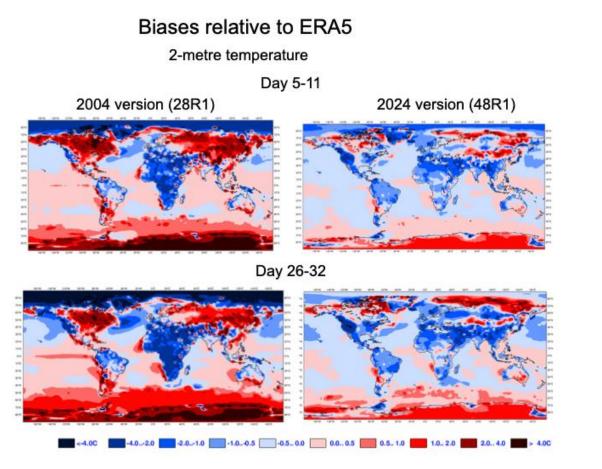

Due to improvement in the ocean initial conditions, the positive impact of partial coupling we have in the old system is gone and replaced with negative impact (at least after 24 hours)

V40

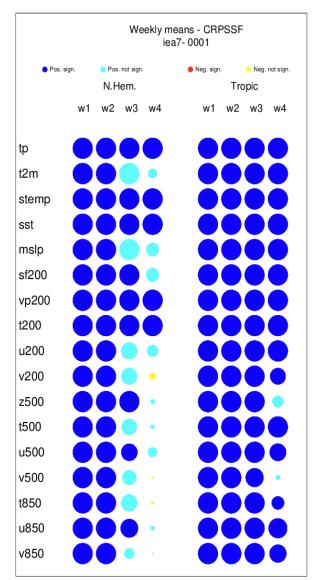

 Based on these results we will not use partial coupling for any NEMO V40 based systems

Evaluating 49r2: Seasonal forecast scores

Skill in equatorial upwelling regions improves with Nemo4 and ORAS6.



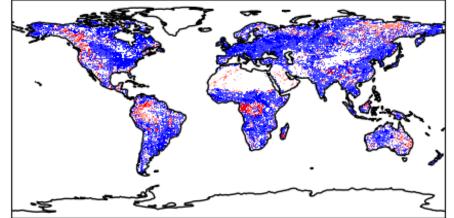
EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS


Tco319 ORCA025, 51 members, May 1 and Nov 1, 2005-2022

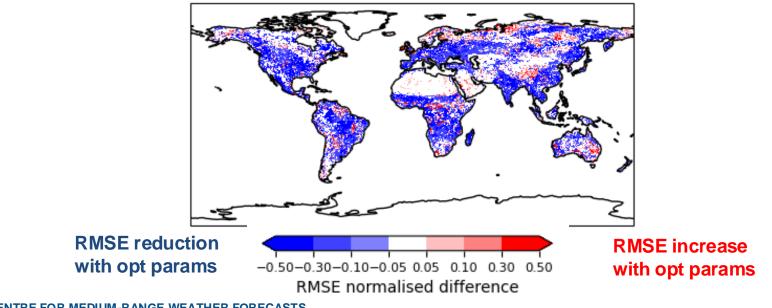
20 Years of Sub-seasonal prediction

48r1 Reforecasts: Same re-forecast period and start dates as 2004 re-forecasts.

MJO 28 days (+8 days) PNA 18 days (+4 days) SSW 26 days (+4 days) NAO 14 days (+4 days) 2024 vs 2004 version



Land parameter optimisation for surface fluxes


What and how:

- Offline optimisation of 2D land-surface parameters
- BFGS optimization with variational cost function
- Clustering based on surface characteristics and errors wrt observations

Offline: Normalised RMSE difference wrt CLASS; latent heat

Offline: Normalised RMSE difference wrt CLASS; sensible heat

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

High-resolution ENS

Improvement (~2-8%) in fCRPS for surface variables

Ensemble upper air variables like deterministic except for:

- Smaller error in the tropics
- More improvement in NH Z500 & Z250

Sample : JJA 2023 and DJF 2023/4 every 48h (85 dates) Range : 5 days

		1	nem	1	em		pics	europe					
		ccaf/ seeps	rmsef/ sdef	ccaf/ seeps	rmsef/ sdef	ccaf/ seeps	rmsef/ sdef	ccaf/ seeps	rmsef/ sdef				
an z	100												
	250												
	500												
	850												
ms	sl												
ţ	100												
	250												
	500												
	850												
vw	100												
	250												
	500												
	850												
ŗ	250												
	700												
ob z	100												
	250												
	500												
	850												
ţ	100												
	250												
	500												
	850												
vw	100												
	250												
	500												
	850												
ŗ	250												
	700												
2t													
2d													
tco	2												
10	ff												
tp													
sw	/h		B										

swh

det : 4 vs 9km

ens : 4 vs 9km

				n.hem			s.hem			tropics		europe		
			rmsef	fcrps	spread	rmsef	fcrps	spread	rmsef	fcrps	spread	rmsef	fcrps	spread
an	z	100												
		250												
		500												
		850												
	msl													
1	ţ	100												
		250												
		500												
		850												
	w	100												
		250												
		500												
		850												
	ŗ	250												
		700												
ob	z	100												
		250												
		500												
		850												
		100												
		250												
		500												
		850												
	vw	100												
		250												
		500										_	_	
		850 250									_			
		250 700												
	2t	100												_
	2d													
	tcc								_		_			
	10ff													
	tp													
	92 swh													
	awii											1		

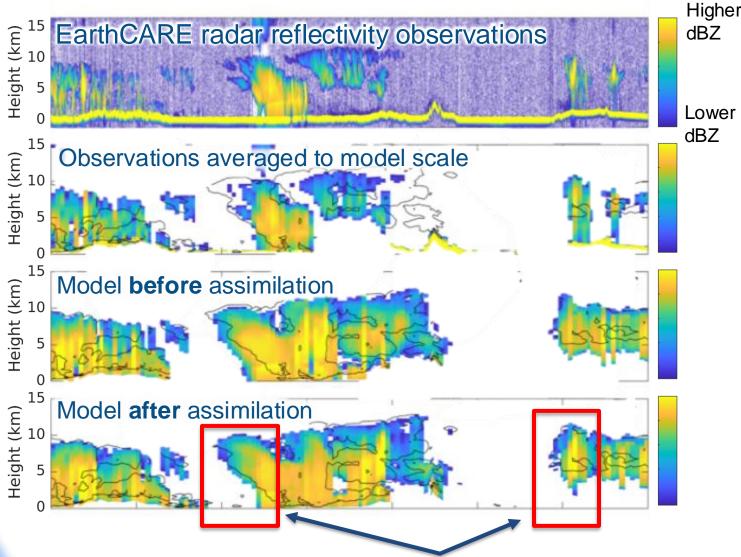
High-resolution DA

Setup of the high-resolution DestinE analyses:

- TCo2559 (4.4 km) trajectory using latest 49r1
 DestinE forecast, including new mean orography
- Improved resolution of minimisation (TL319/TL399/TCo399/TCo511)
- Observation time-slots reduced from 1800s to 400s
- Observation rescreening
- High-resolution geostationary satellite data (125 km thinning to 75 km) :

Sample : 20230901 to 20231004 every 24h (34 dates) Range : 10 days

FC 4km vs 9km (AN 9km)


_				<u>2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</u>		<u> Skill</u>			
			n.hem	s.hem	tropics	europe			
			rmsef/ sdef	rmsef/ sdef	rmsef/ sdef	rmsef/ sdef	ΙL		_
an	z	100					ar	IZ	10
									2!
									50
		850							8
	msl							msl	
	t	100						t	10
		250							2!
		500							50
		850							8
	2t							2t	
	vw	100						VW	10
		250							2
		500							50
		850							8
	10ff							10ff	
	ŗ	250						ŗ	2
		700							70
	10ff@sea							10ff@se	a
	swh							swh	
	mwp							mwp	
ob	z	100					ot	z	10
		250							2
		500							50
		850							8
	t	100						t	10
		250							2
		500							50
		850							8
	2t							2t	
	vw	100						vw	10
		250							2
		500							50
		850							8
	10ff							10ff	Г
	ŗ	250						ŗ	2!
		700							70
	2d							2d	
	tcc							tcc	
	tp							tp	
	swh							swh	
							J 📖		

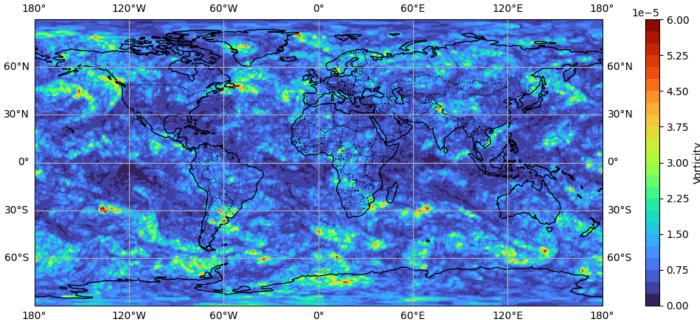
AN+FC 4km vs 9km

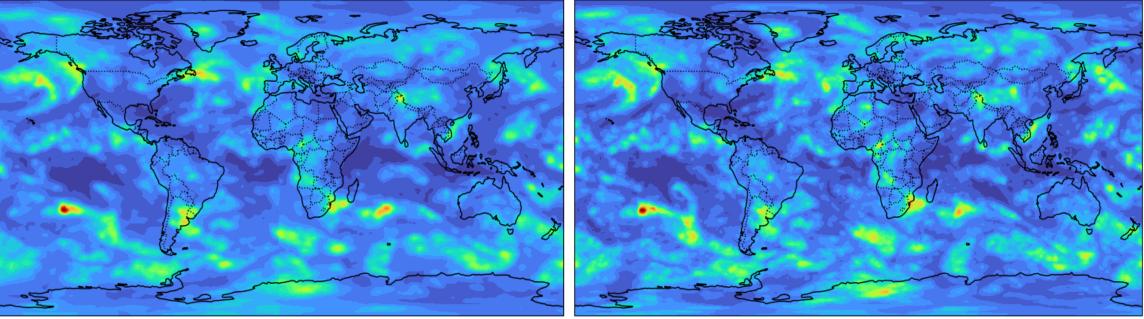
		F		C 4kn	<u>n vs 9</u>	KIII
			n.hem	s.hem	tropics	europe
			rmsef/ sdef	rmsef/ sdef	rmsef/ sdef	rmsef/ sdef
an	z	100				
		250				
		500				
		850				
	msl					
	ţ	100				
		250				
		500				
		850				
	2t					
	vw	100				
		250				
		500				
		850				
	10ff					
	_	700				
	10ff@sea					
	swh					
	mwp			_		
ob						
		250				
		500				
		850				
		100	_			
		250				
		500 850				
	2t	000				
		100				
		250				
		500				
		850				
	10ff	330				
		250				
	2d	/00				
	tcc					
	tp					
	swh					

Monitoring, assimilation and evaluation using EarthCARE

- Rapid detection of instrument issues through O-B monitoring
 - Direct impact on forecast through assimilation expected
 - Convective-scale
 observations for hi-res
 model evaluation

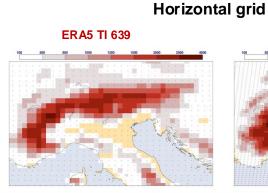
Analysis brought closer to observations

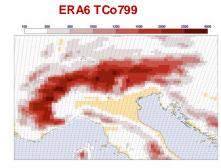

DestinE 4.4 km cloud fields 2024-06-18 00UTC + 14h

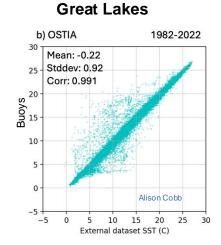


Emulation of EDA background error variances: ⁶⁰ Turing test

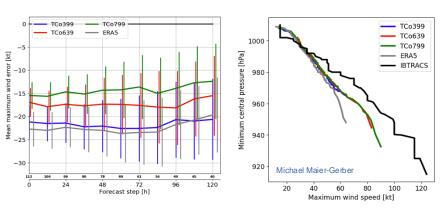
Input: 5-EDA es, F80 grid, L100 2023-10-16 0900

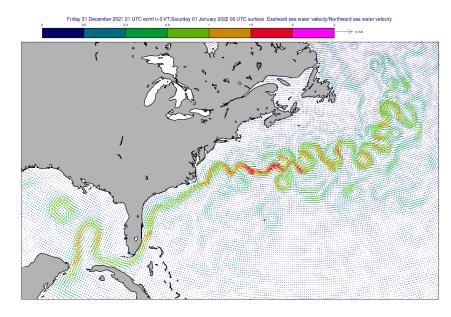

Which one is ML generated?

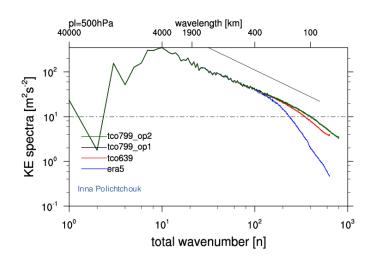


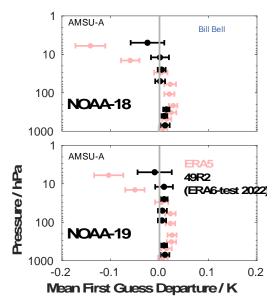


Reanalyses

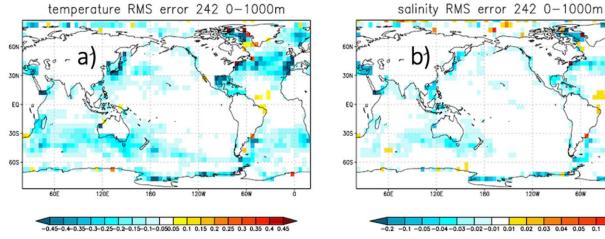

ERA6 preliminary results

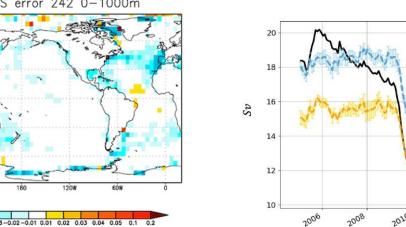



Tropical cyclones


Hourly ocean currents, SST, sea ice

Energy spectra


Departure statistics



ORAS6 performance

The performance of ORAS6 is significantly improved compared to its predecessor ORAS5. Fit-toobservations error standard deviations have been reduced by ~15% for sea-water temperature, and by ~7% for sea-water salinity.

O-B RMSE changes w.r.t ORAS5

AMOC Volume Transport across 26°N

ORAS6

ORAS5 RAPID obs

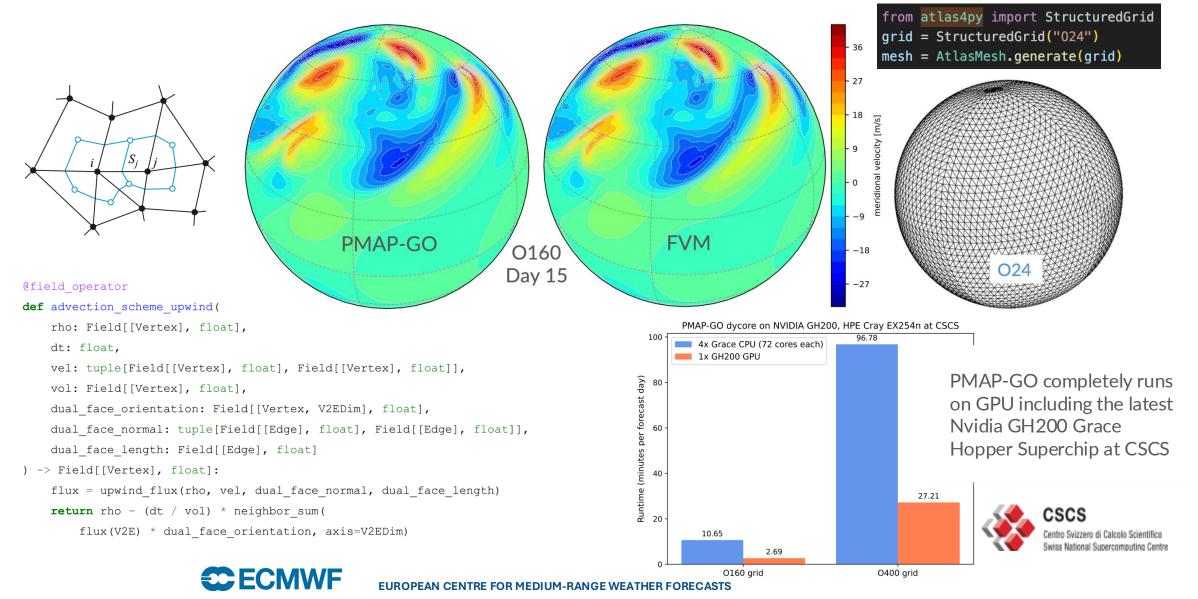
Figure 11 Changes in RMS O-B departures in a) temperature (in K) and b) salinity (in PSU) from ORAS6 w.r.t ORAS5. RMS errors are computed using model short-range forecasts (background) against all active in-situ observations, over 2010-2020 period, and averaged from sea surface to 1000 m depth. Blue colours indicate ocean state variables are closer to observations in ORAS6 than in ORAS5.

R20

Cy49r1

- Final 50-member ensemble scorecard for Cy49r1 from initial research testing leading up to release of the Cycle (summer and winter combined, 152 forecasts).
- Particularly strong for 2m temperature and 10m wind

Main changes:


- assimilation of 2m temperature observations
- Land-surface model updates
- activation of the stochastically perturbed parameterisations (SPP) model uncertainty scheme in all ensemble configurations.

shaded bo	oxes for	confidence boundarle									
2	-	n.h			em	tropics					
		rmsef	crps	rmsef	crps	rmsef	crps				
anz											
	in the second										
	500										
	850										
msl											
ţ	50			ARABRAT CARARA							
	100										
	250										
	500										
	850										
ff	50										
	100										
	250										
	500										
	850										
<u>r</u>	200										
	700										
2t											
10ff@s	sea										
swh											
mwp											
ob z	50										
	100			an a							
	250										
	500										
	850										
<u>t</u>	50										
	100										
	250										
	500										
	850				*******						
ff	50										
	100										
	250			**********							
	500										
	850			REAL PROPERTY OF A							
r.	200										
	12.307.001.0						Bagangangangan				
2t											
<u>2d</u>			FTSBEERS CONTRACTOR								
tcc											
<u>10ff</u>											
<u> E</u> uro	pean		[W]]unnüngiQuui								
swh											

Hybrid 2024 – Adapting IFS to GPUs and accelerators

				CPU	GPU (Nvidia)				GPU (AMD)		
Model comp	1odel component		Porting method		Status	Perfo	rmance	Expected Completion	Status	Perf.	
	Spectral Transform	Manual, OpenACC		16%	Done	Good		MS1 (Q1-24)	Optimising	GPU-MI	
Dynamical	Grid point dynamics	FIELD API + Loki		10%	Porting			MS2 (Q4-24)	Porting		
core	Semi-Lagrangian	FIELD API +	FIELD API + Loki		Optimising	Data t MPI co	ransfer omms	MS2 (Q4-24)	Porting	Blocked	
	EC-physics	FIELD API +	Loki	0.00/	Porting	Data t	ransfer	MS1 / MS 2 *	Porting	kec	
·	Surface model	FIELD API + Loki		30%	Porting			MS2 (Q4-24)	Porting	d by	
Physics	Radiation	Loki		5%	Porting	Memo	ory use	MS2 (Q4-24)	Porting		
	Perturbation	FIELD API + Loki		N/A	Porting			MS2 (Q4-24)	Porting	compiler	
	Dy-core	Manual, Ope	enACC	00/	Dana	Cood		02.0024	Porting	ile	
Wave model	Source term	FIELD API + Loki		8%	Done	Good		Q3 2024	Porting		
Atmospheric c	omposition	FIELD API +	Loki	N/A							
	DDH	CPU-only		N/A							
Diagnostics	FULLPOS	Manual		6%							
Ocean model (I	NEMO)	CPU-only, PS	Syclone	6%	Exploring						
Cor	nplete Dem	onstrated	Worki	ng on it	Externalis	sues	Not sta	arted yet	Out of scop	е	

PMAP-GO: Global FVM on Octahedral grid in Python with GT4Py.next

ML Project: different paths towards a ML ensemble prediction at ECMWF

The hybrid model

Enhanced and accelerated implementation of ECMWF ML Roadmap

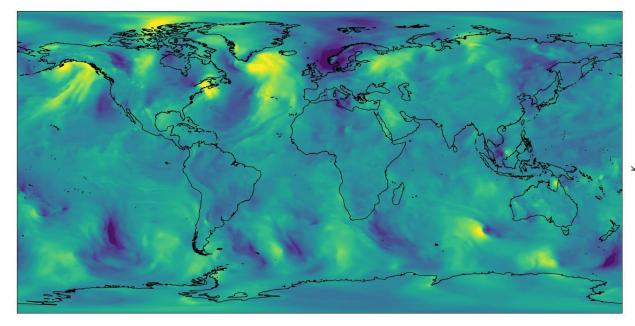
Development of a ML ensemble forecast

Data-driven model initialised with NWP analysis hence requiring conventional data assimilation.

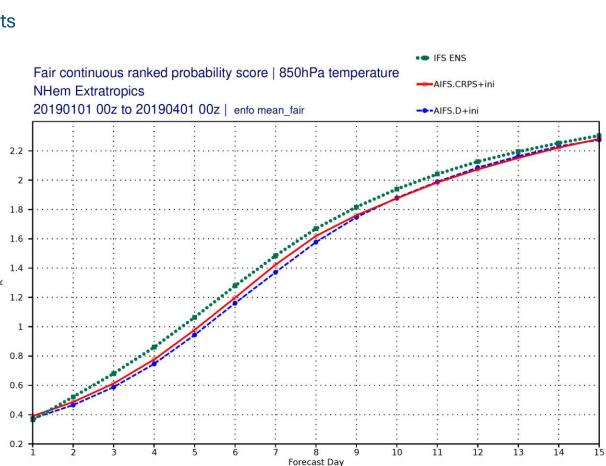
Embracing novelty

Observations-driven ML system

A whole system reinventing the path from observations to predictions.


A scientific challenge

Delivering results

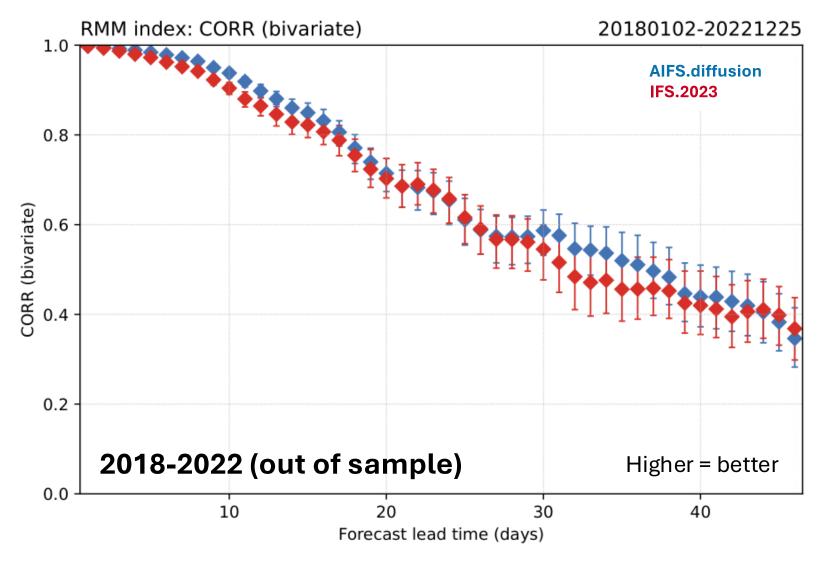

Anemoi

Ensemble AIFS forecast

Preliminary results, ~ 1 deg resolution models (O96) Two approaches, both outperforming IFS for some headline scores Diffusion method running live since June 2024, providing data and plots

Probabilistic framing encourages prediction of small scales

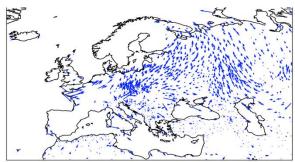
Lower = better


IFS ENS

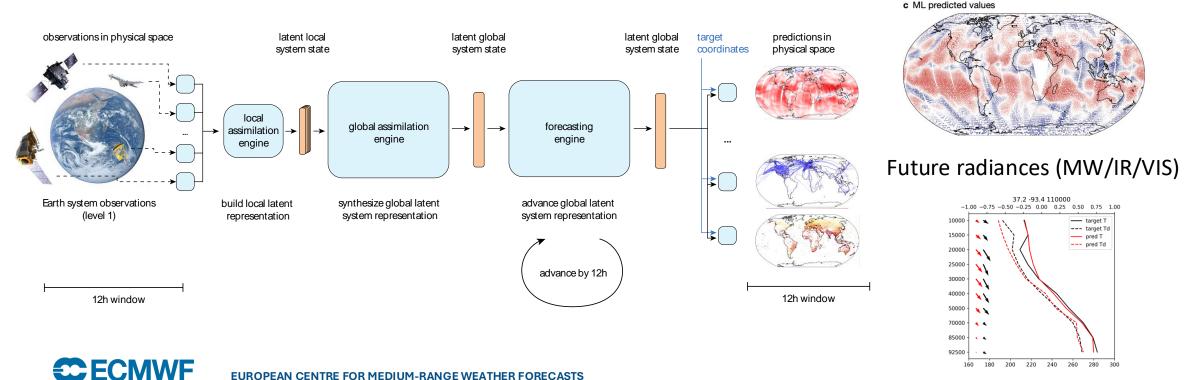
AIFS.CRPS+ini

----AIFS.D+ini

Sub-seasonal AIFS prediction, first look ... Madden-Julien Oscillation


Stable predictions with lower biases than the IFS.

Expect introduction of Earth-system processes to further boost skill.


Pushing towards operational sub-seasonal AIFS system.

Data Driven Machine Learning Forecast trained / initialised from observations

- Using historical measurements (10yrs ++) the network learns correlations between observations from different sources, at different locations and (crucially) at different times.
- Then from an input set of real-time observations the network can <u>predict</u> an observation of any <u>type</u> at any required future <u>location</u> and <u>time</u>.

Future SYNOP (T2m / wind)

Future SONDES (T / Q / wind)

Data Driven Machine Learning Forecast trained / initialised from observations

10-day forecast trained and initialised only from observations

160 180 200 220 240 260 280 300

