Environment and Climate Change Canada

Centre Update

WGNE39

Ron McTaggart-Cowan

Overview

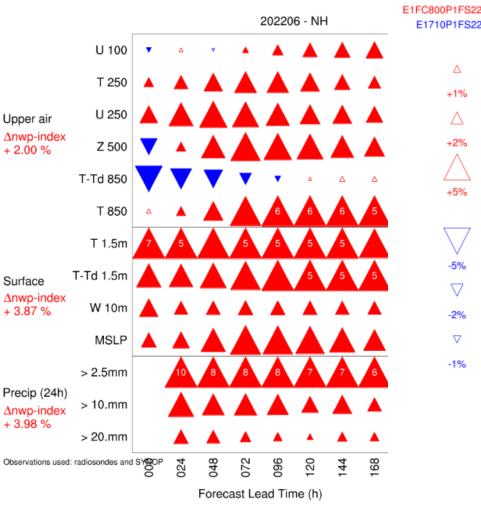
- Operational system upgrades in 2024
 - Major upgrade to the global ensemble prediction system
 - Moderate upgrades to deterministic and high-resolution systems
- Current experiments with machine learning
 - Graphcast fine-tuning and effective resolution
 - Spectral nudging towards ML inferences
- Future improvements
 - Next major upgrade expected in 2026

Global Ensemble Prediction System

- The Canadian Meteorological Centre (CMC) runs the Global Ensemble Prediction System (GEPS), which underwent a major upgrade in 2024:
 - 256-member EnKF was replaced with LETKF
 - Analyses are recentered on the deterministic 4DEnVar analysis
 - Scale-dependent localization
 - Elimination of climatological part of the background error covariance (B) matrix
 - Grid spacing reduced from 39 km to 25 km
 - Updates to model error representation
 - Upgrade of the NEMO version used in GEPS forecasts, including Delta-Eddington radiative flux transfer
- Improvements to guidance are highly significant

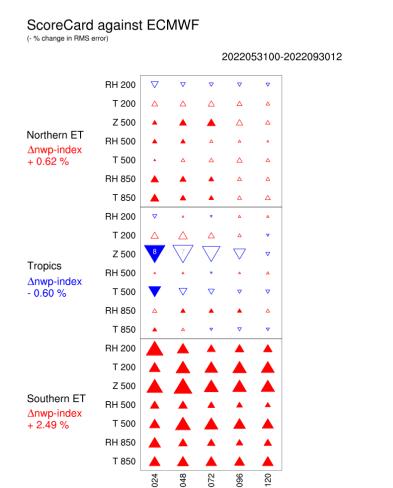
GEPS Control Member

- Increased resolution brings the GEPS control member to the grid spacing of the former deterministic model, a well-tested configuration
- Significant improvements are observed in the control member
- Some parameter adjustments were used to reduce biases:
 - increase in the cloud ice effective radius to reduce an upper-tropospheric warm bias



GEPS Probabilistic Forecasts

- Coupled GEPS forecasts from 20 subsampled analyses:
 - Additive inflation
 - Stochastic kinetic energy backscatter
 - Stochastically perturbed parameterizations (SPP)
- Some retuning of SPP was needed to reduce over-dispersion:
 - Reduction in upstream-point error model within the dynamical core
 - An expected cost of maintaining SPP


GEPS scoreCard - Overall Impact

upper air and surface: - % change in CRPS) precipitation accum. : change in BSS x 100)

Global Deterministic Prediction System

- Upgrades to the 15-km GDPS in 2024 were modest:
 - All-sky assimilation of ATMS temperatures and AMSUB/MHS moisture
 - Additional assimilation of SWOB and METAR
- Improvements are noted particularly in the Southern Hemisphere as a result of the increased resolution/quality of the B-matrix from the GEPS
- This is one of the first times that the Bmatrix has had a notable impact on deterministic scores

G2FC900V2E22

32810E22V3

 Δ

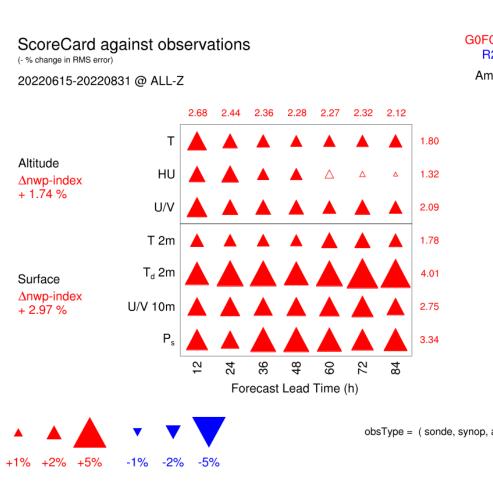
+1%

 \wedge

+2%

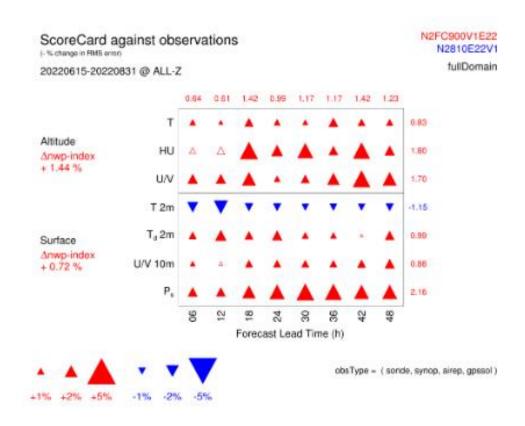
-5%

 ∇

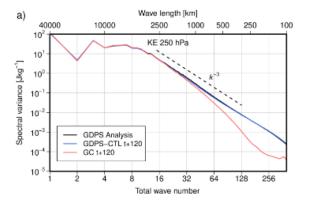

-2%

 ∇

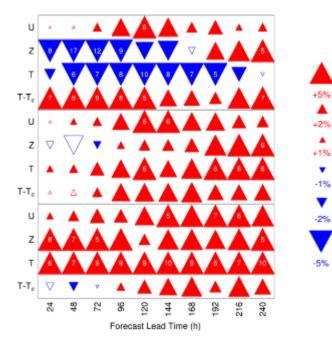
-1%


Regional Deterministic Prediction System

- With the GDPS at 15 km, the 10-km RDPS was eliminated from the operational suite
 - Reduce the number of operational systems (~40)
- A 10-km configuration of the GDPS added to the global suite in a discontinuous cycle:
 - Maintains resolution for services / users
 - Maintains resolution of piloting data for operational LAMs
- Both assimilation and forecasts benefit from the global domain, with results significantly improved over the former RPDS


High Resolution Deterministic Prediction System

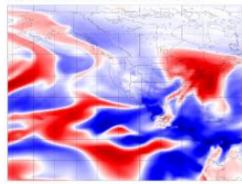
- Minor/indirect upgrades to the 2.5-km HRDPS:
 - Major updates to the independent surface analysis cycle (Caldas) used to initialize surface properties
 - Analysis increments computed using 25km GEPS B-matrix (increased resolution)
 - Piloting data provided by 10-km global
 - Reduced filtering of resolved orography and corresponding TOFD reduction
- Improvements to scores are modest

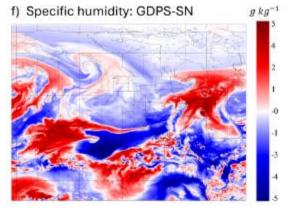


Experiments with Machine Learning

- Focus of modelling research is on reanalysistrained full-system emulation rather than component replacement
- Most efforts are focused on Graphcast:
 - Model and pre-trained parameters are freely available
 - Training / fine-tuning is more complicated
 - Evaluation includes comparison at equivalent effective resolution
- Retraining of 13-level 0.25° Graphcast is currently underway, but GPU resources are very limited

b) Low res. – Boreal winter

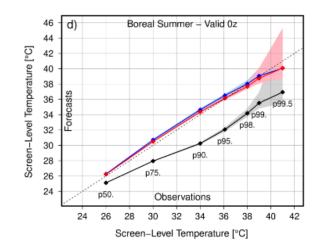


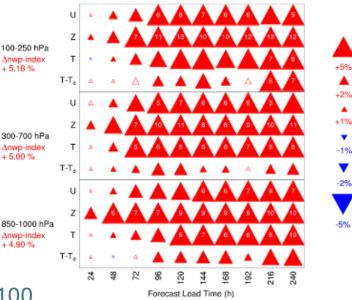

ML-Based Spectral Nudging

- ML-based inferences appear to be very good for large-scale features (smaller scales are removed as unpredictable)
- The global deterministic model can be spectrally nudged at large scales (>2500 km) to improve medium-range predictions:
 - Smaller scales are "filled" naturally by the physically based model
 - Balance and internal consistency is ensured
 - The full suite of coherent operational outputs can be produced

d) Specific humidity: GDPS-CTL

e) Specific humidity: GraphCast




Example for 850 hPa specific humidity.

ML-Based Spectral Nudging

- Nudging-based hybridization allows the system to predict extremes (physical model) while improving medium-range guidance (ML model)
- An experimental version will be implemented once from-scratch Graphcast training complete
- Significant potential for improvement:
 - 37-level Graphcast suffers from a lack of fine-tuning but will require less vertical interpolation for nudging
 - Tests at ECMWF of nudging with model-level AIFS inferences are very promising

a) Full res. – Boreal winter

https://arxiv.org/pdf/2407.06100

Future Work (Physically Based Models)

- Major update to land surface and atmospheric physics for the high resolution deterministic prediction system
- Introduction of a new semi-Lagrangian dynamical core that eliminates the need for off-centering in all systems
- Further resolution enhancement in global ensembles (to 10 km spacing), including replacement of deterministic with control member
- Introduction of a cycling high-resolution LAM ensemble
 - Replaces the current 20-member 10 km downscaling from global ensemble analyses
 - Target grid spacing is ~6km