
Current cycle of WGSIP projects (2019-2024):

- Prediction Capabilities
 - Monsoons
 - Ocean prediction
 - <u>Temperature trends</u>
- Extremes
- Information for Decision-Makers (I4D)

- Cyclical framework was implemented at WGSIP 21 in 2019
- Will be renewed at this meeting
- Some 2019-2024 activities may continue at initiative of leads
- We may wish to consider whether to label these as "projects" (as before), "activities", "research focuses" (like CLIVAR), or...

WGSIP Extremes project

WGSIP 25/WGNE 39

4-8 November 2024

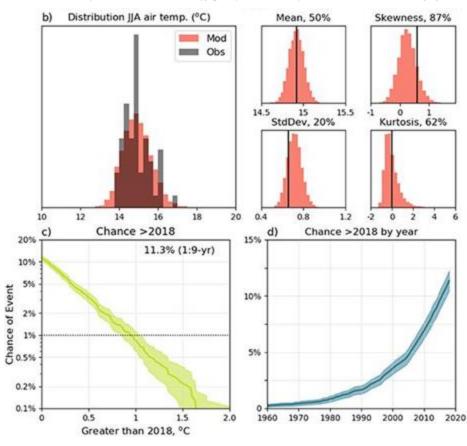
Toulouse, France

Objectives/expected outcomes

- Quantify the probabilities/risks of extremes, including <u>unprecedented</u> extremes, for a range of phenomena over different regions and timescales using large ensembles of initialised climate model simulations ("hindcasts")
- Assess current capability of prediction systems to predict extreme events

... by exploiting hindcast databases of CHFP, S2S, C3S...

- Facilitate communication of advances in these areas
- Contribute to capacity building for Early Career Researchers in the Global South


Quantifying the probabilities of extremes

- Exploit "UNSEEN" methodology developed at Met Office:
 - assemble large volume of hindcasts
 - validate simulation quality for phenomenon of interest
 - assess tail of distribution to determine probability of unprecedented extremes

ENVIRONMENTAL RESEARCH LETTERS

Current likelihood and dynamics of hot summers in the UK

Gillian Kay¹ (2), Nick Dunstone¹ (2), Doug Smith¹ (2), Tyrone Dunbar¹ (2), Rosie Eade¹ (2) and Adam Scaife^{1,2} (2) Published 3 September 2020 • © 2020 Crown copyright, Reproduced with the permission of the Controller of Her Majesty's

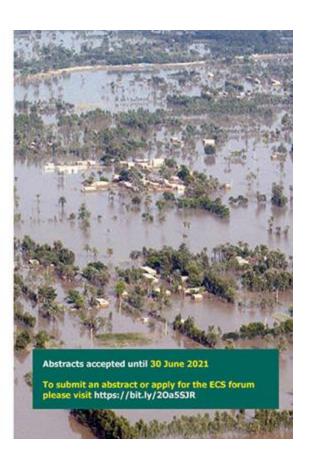
Assessment of probabilities of exceeding record hot UK summer of 2018 based on HadGEM3-GC2 decadal hindcasts

2021 Extremes Workshop

Supported and facilitated by

- Asia-Pacific Network for Global Change Research (APN)
- APEC Climate Center (APCC)

WCRP Workshop on Extremes in Climate Prediction Ensembles (ExCPEns)


- Online from APEC Climate Center 25-27 October 2021
- Early Career Scientist training and discussion forum 27-28 October 2021

Sponsored by

APN ASA PACIFIC NETWORK FOR

Countries represented by Workshop and Early Career Scientist Training Session registrants.

2021 Extremes Workshop

Workshop sessions:

- 1. Identification of extremes in observations and climate prediction ensembles
- 2. Physical mechanisms of extremes in observations and climate prediction ensembles
- 3. Regional climate extreme information relevant to impacts, vulnerability and adaptation
- 4. Prediction and predictability of large-scale climate variability relevant to extreme events
- 5. Prediction and predictability of specific extreme events (>10 days)
- 6. Quantifying current and future risks of climate extremes

Scientific Organizing Committee

June-Yi Lee (PNU/ICCP, Co-chair of WCRP/WGSIP) William Merryfield (ECCC, Co-chair of WCRP/WGSIP) Doug Smith (UK Met Office, WCRP/EPESC) Frédéric Vitart (ECMWF, Co-chair of WCRP/WWRP/S2S) Xuebin Zhang (ECCC, Co-chair of WCRP/GC-Extremes) Arun Kumar (NOAA, WCRP/WWRP/S2S) Hongli Ren (CMA, WCRP/WGSIP) Catherine Michaut (IPSL/UVSQ, WCRP) Yun-Young Lee (APCC) Local Organizing Committee Jin-Ho Yoo (APCC) Sangwon Moon (APCC) June-Yi Lee (PNU/RCCS & ICCP, WCRP/WGSIP & WCRP/EPESC)

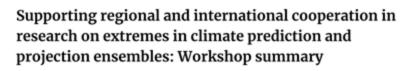
Presentation files:

https://trello.com/b/0h9RHCb4/wcrp-excpens-workshop-2021

Recorded presentations:

https://www.youtube.com/playlist?list=PLGUa1D7J0MXbFL

qO3O4OMOGcDoAko9iY2



Extremes Workshop follow up

- Meeting report in S2S Newsletter
- Summary article in APN Science Bulletin <u>https://doi.org/10.30852/sb.2022.1977</u>

APN Science Bulletin

2022, Volume 12, Issue 1, 141-153, e-ISSN 2522-7971

June-Yi Lee^{a,b}⁽⁰⁾, William J. Merryfield^{c*}⁽⁰⁾, Sangwon Moon^d, Suhee Han^d

- ^a Research Center for Climate Sciences, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan, Republic of Korea
- ^b Center for Climate Physics, Institute for Basic Science, Busan, Republic of Korea
- ^c Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, 2472 Arbutus Rd, Victoria, V8N 1V8, BC, Canada
- ^d APEC Climate Center, Centum 7ro, 48058, Haeundaegu, Busan, Republic of Korea
- * Corresponding author. Email: bill.merryfield@ec.gc.ca.

Special issue in APJAS
https://doi.org/10.30852/sb.2022.1977

Volume 59, issue 1, February 2023 9 articles in this issue

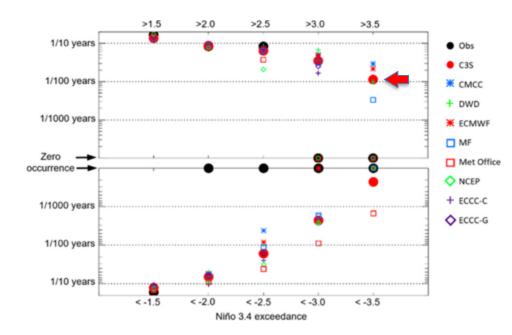
EDITORIAL

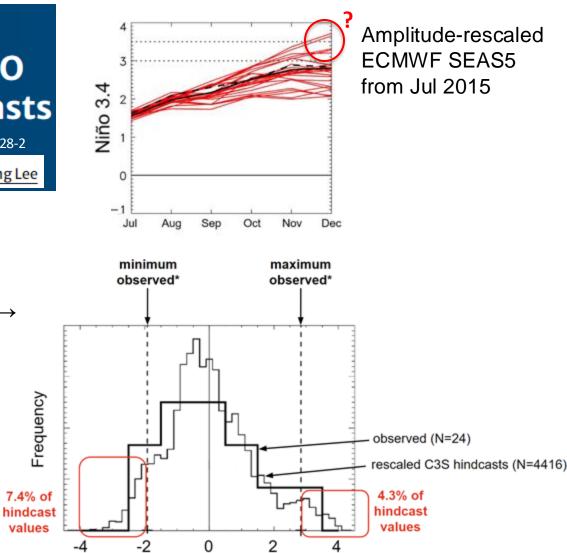
Extreme Weather and Climate Events: Dynamics, Predictability and Ensemble Simulations

Christian L. E. Franzke^{1,2} · June-Yi Lee^{1,2,3} · Terence O'Kane⁴ · William Merryfield⁵ · Xuebin Zhang⁶

Published online: 14 February 2023 © The Author(s) 2023

Associated associated locate and associated and the Participation of the


Home > Asia-Pacific Journal of Atmospheric Sciences > Article


Estimating Probabilities of Extreme ENSO Events from Copernicus Seasonal Hindcasts

Original Article | <u>Open access</u> | Published: 04 May 2023 Volume 59, pages 479–493, (2023) <u>Cite this article</u> https://doi.org/10.1007/s13143-023-00328-2

William J. Merryfield 🛛 & Woo-Sung Lee

- 184 realizations of 1993-2016 ENSO variability
- Bias correct Niño3.4 for mean and interannual variance
- Many simulated Decembers exceed obs Niño3.4 extremes \rightarrow
- Implied return period ~100 years for Niño3.4>3.5°C

Also: Wang, Y., H.-L. Ren^{*}, et al. 2022: *JGRA*, MJO Phase Swings Modulate the Recurring Latitudinal Shifts of the 2020 Extreme Summer-Monsoon Rainfall Around Yangtse, <u>https://doi.org.10.1029/2021JD036011</u>

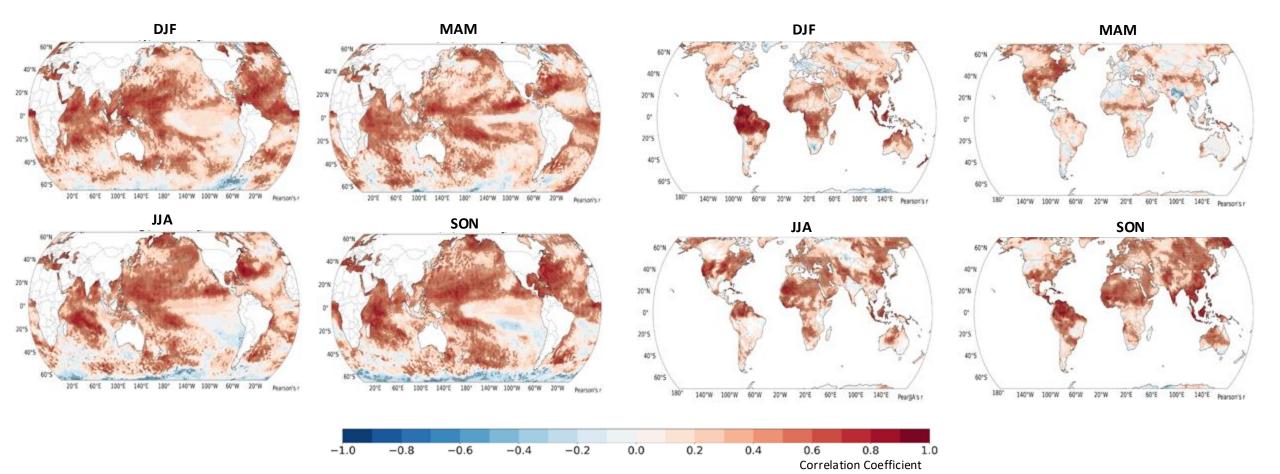
December Nino3.4 Index (°C)

Multi-year Prediction of Statistics of Marine and Terrestrial Heatwaves

Alexia Karwat¹, June-Yi Lee^{1,2}, Christian L. E. Franzke², and Yong-Yub Kim², Eun-Young Kwon², Robert C. Garrett³, and Sun-Seon Lee²

¹ Research Center for Climate Sciences, Pusan National University, Busan, Republic of Korea
² IBS Center for Climate Physics, Busan, Republic of Korea
³ Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, USA

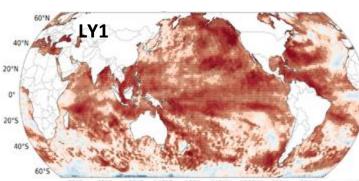
- Data Period: 1981 2020
- Observation: ERA5 and NOAA SST
- Model Experiments: 50-member CESM2-LE, 20-member Ocean assimilation (ASSM), 20-member hindcast initiated from Jan 1 (HIND)
- Marine Heat Wave (MHW) = 5 consecutive days ≥ 90th percentile of SST (e.g., Holbrook et al., 2020; Amaya et al. 2023)
- Terrestrial Heat Wave (THW) = 3 consecutive days ≥ 90th percentile of 2mT

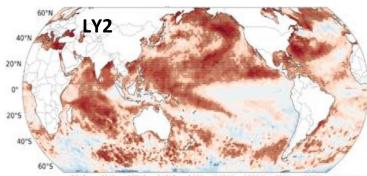


Anomaly Correlation Coefficient Skill from Forcing CESM2-LE vs Obs

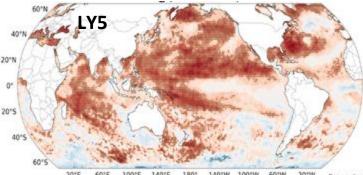
Frequency of MHWs

Frequency of THWs

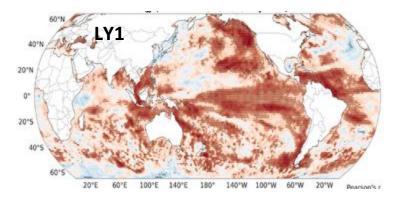

• High skill over many region due to the increasing trend of MHWs and THWs under GHG warming

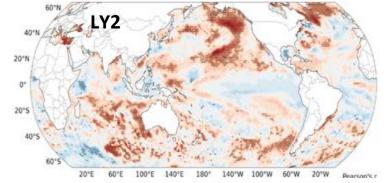

Anomaly Correlation Coefficient Skill for JJA MHWs (Total Skill)

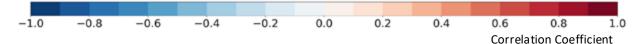
17-month Lead


5-month Lead

0"E 60"E 100"E 140"E 180" 140"W 100"W 60"W 20"W Pearson's r

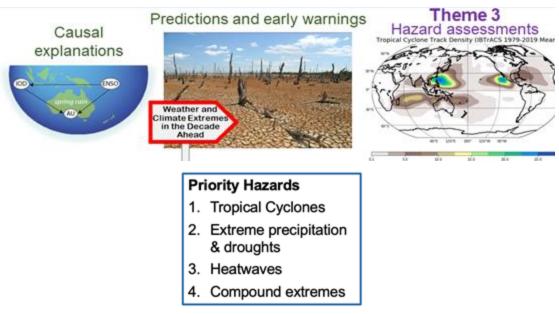

20"E 60"E 100"E 140"E 180" 140"W 100"W 60"W 20"W Pearson's r


53-month Lead



20°E 60°E 100°E 140°E 180° 140°W 100°W 60°W 20°W Pearson's

Anomaly Correlation Coefficient Skill for JJA MHWs from Internal Variability


• Multi-year skills are mainly due to the increasing trend. However, internal modes of variability also

contribute to multi-year prediction skills for MHWs and THWs depending on region and season.

For discussion

- Is there an impetus for extremes activity to continue?
- Would need updated plan, subgroup to take ownership
- Should we consider to coordinate activities with EPESC WGIII?

EPESC WGIII

Objectives:

- 1. Quantifying the current likelihood of specific weather and climate hazards
- 2. Quantifying changes in weather and climate hazards on multi-annual to decadal timescales
- 3. Understanding the processes connecting changes in hazards to natural and anthropogenic drivers of climate variability and change
- 4. Advancing capabilities to predict and project changes in hazards
- Extreme event & hazard attribution on A2D scale
- Links between hazards & large-scale circulation

