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The stratosphere is one of the only sources of persistent

signal in the atmosphere on S2S timescales

Prediction Skill (days)
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« Skillful forecasts of extratropical geopotential heights
In the stratosphere extend to lead-times ~2-3x longer
than in the troposphere.

« Extended prediction skill in the troposphere is found in
NH winter and SH spring, during periods of active
stratosphere-troposphere coupling.

 Following stratospheric polar vortex extremes,
anomalies in the lower stratosphere can persist for
weeks to months, with an impact on extremes.
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SNAP —Stratospheric Network for the Assessment of
Predictability

Chaim I. Garfinkel, Amy H. Butler, Blanca Ayarzagtiena
Two main activities:
1. Assessment of operational S2S forecast systems

2. Targeted simulations to isolate the role of the stratosphere for surface

extremes, and isolate model biases (SNAPSI)
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Pressure [hPa]

There are known model biases that may affect
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stratosphere-troposphere coupling
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 Generally similar week 4 Dbiases
across S2S prediction systems:
1) Polar vortex wind/T bias in winter
hemisphere
2) Extratropical UTLS cold bias
3) Global-mean stratospheric warm
bias
* Models with lower model lid height
on average show larger biases

Composites of biases and mean absolute errors at week 4,
verified against ERA-Interim, from Lawrence et al. (2022)
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There are known model biases that may affect

stratosphere-troposphere coupling

High-Top
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Do these biases lead to lower skill?
To a poorer representation of strat-trop coupling processes?

Consider 22 S2S models (most from S2S archive, plus a few US based

models)
' on average show larger biases

T 1 - Composites of biases and mean absolute errors at week 4,
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Breaking stratosphere-troposphere coupling in the NH

into upward and downward processes....



1) Upward flux of wave activity from troposphere to

stratosphere

With normal west-to-east winds,
planetary waves can travel freely.

Only the largest Rossby waves (wavenumbers 1-2)
can travel into the stratosphere

From the NOAA Polar Vortex Blog on Climate.gov

regression coefficient

Regression of 45-75N 500hPa heat flux (days 11-22)
with 100hPa heat flux, DJF
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S2S models underestimate upward flux of largest
atmospheric waves from troposphere into stratosphere.

Garfinkel et al. 2024, WCD




Bias in wave-1 coupling from

500 to 100hPa
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1) Upward flux of wave activity from troposphere to

stratosphere

What explains intermodel spread in
the regression coefficients?

_NH _DJF_ regress
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Climatological wave-1 bias, 500 hPa

Models with worse
tropospheric quasi-stationary
wave-1 biases tend to have
too-weak wave-1 upward
coupling.

regression coefficient

Regression of 500hPa heat flux (days 11-22) with
100hPa heat flux , DJF
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1) Upward flux of wave activity from troposphere to

stratosphere

Regression of 500hPa heat flux (days 11-22) with
100hPa heat flux , DJF
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Summary of S2S model biases in stratosphere-

troposphere coupling

(a) summary of biases in coupling strength [percent difference compared to subsampled ERA5], . NH DJF Garfinkel et al.
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In the NH winter, most S2S models underestimate upward wave coupling and
downward coupling within the stratosphere. A few models overestimate

downward coupling to the lower troposphere.




2) Polar stratospheric winds respond to upward flux of

atmospheric waves

Regression coefficient of 100hPa heat flux (days 11-22),

Now, planetary waves break against east-to-west “roadblock”, _ )
with polar cap height at 10hPa, DJF

reversing winds in the layer below.
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Combination of stratospheric vortex state and strength/location
of tropospheric waves can cause waves to break, depositing
easterly momentum and slowing the stratospheric winds.

S2S models underestimate sensitivity of polar
stratospheric winds to upward wave flux

From the NOAA Polar Vortex Blog on Climate.gov Garfinkel et al. 2024, WCD




2) Polar stratospheric winds respond to upward flux of

atmospheric waves

Regression coefficient of 100hPa heat flux (days 11-22),
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2) Polar stratospheric winds respond to upward flux of

atmospheric waves

Regression coefficient of 100hPa heat flux (days 11-22),
with polar cap height at 10hPa, DJF
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3) Downward coupling from the mid to lower

stratosphere

Planetary waves break at lower and Correlation coefficient of 10 hPa polar-cap height
lower altitudes in the stratosphere. (days 9-12), with 100 hPa polar cap height, DIF
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Wave-mean flow interactions drive the downward propagation S2S models underestimate magnitude of
of anomalies within the stratosphere. downward coupling within the stratosphere.

From the NOAA Polar Vortex Blog on Climate.gov Garfinkel et al. 2024, WCD




4) Downward coupling from the lower stratosphere to

troposphere

Planetary waves are confined to the troposphere, Regression coefficient of 100hPa polar cap height
where weather occurs. (days 9-12) with 850hPa polar cap height, DJF
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Persistent anomalies in lower stratospheric winds Some S2S systems overestimate downward coupling from the
likely drive feedbacks with tropospheric eddies that lower stratosphere to the surface (in part due to systematic
affect weather patterns for weeks to months. positive bias in variance of 850 hPa polar cap heights)

From the NOAA Polar Vortex Blog on Climate.gov Garfinkel et al. 2024, WCD




Summary of S2S model biases in stratosphere-

troposphere coupling

) ) ) ) Garfinkel et al.
a) summary of biases in coupling strength [percent difference compared to subsampled ERA5], NH DJF
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In the NH winter, most S2S models underestimate upward wave coupling and
downward coupling within the stratosphere. A few models overestimate
downward coupling to the lower troposphere.




Conclusions

The NH polar vortex in most S2S forecasting systems is insufficiently coupled to tropospheric variability.

This result is consistent with the too-weak impact of predictable tropospheric modes of variability such as
the Madden Julian Oscillation on the stratosphere (Garfinkel et al. 2020, Stan et al. 2022).

We find that these processes are better captured in models with less bias in the climatological quasi-
stationary waves and higher model tops.

Poor coupling has implications for predictability of the stratosphere. Ongoing work to explore the
implications for predictability of surface climate.

SNAP is interested in engaging with WGSIP/WGNE. Please keep us updated!

Questions/Comments?
Contact: chaim.garfinkel@mail.huji.ac.il
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