

World Climate Research Programme

Working Group on Numerical Experimentation - WGNE

Co-chairs: Nils Wedi (ECMWF, Int.), <u>Ariane Frassoni</u> (INPE, Brazil) **ESMO Secretariat:** Fanny Adloff et al

<u>Core of WGNE membership</u>: global (research) experts who are vested in enhancing the emerging capacities of operational meteorological modelling centers

https://www.wcrp-esmo.org/working-groups/the-working-group-on-numerical-experimentation

- Many thanks to the outgoing members
 - Nils Wedi (ECMWF)
 - Guenther Zaengl-DWD (Germany)
 - Oscar Alves-BOM (Australia)
 - Jian Sun-CMA (China)

WCRP

World Climate Research Programme

Working Group on Numerical Experimentation - WGNE

Members

- Ariane Frassoni-INPE/CPTEC (Brazil, co-chair)
- Tim Graham-Met Office (UK)
- Romain Roehrig-CNRM/MeteoFrance (France)
- Peter Lauritzen-NCAR (USA)
- Fanglin Yang-NOAA/NCEP/EMC (USA)
- Mohau Jacob Mateyisi-CSIR (South Africa)
- Ankur Srivastava-IITM (India)

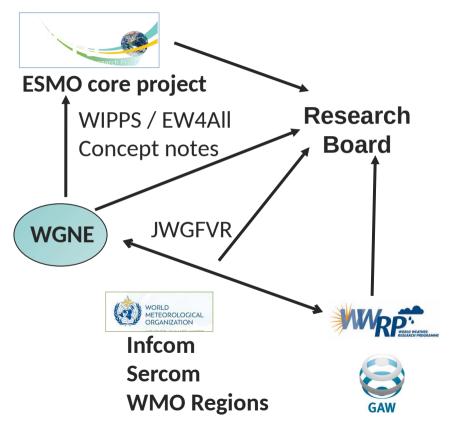
- Masashi Ujiie-JMA (Japan)
- Ron McTaggart-Cowan-ECCC (Canada)
- Inna Polichtchouk-ECMWF (UK)
- Eun-Hee Lee-KIAPS (S. Korea)
- Xingliang Li-CMA (China)
- Sarat Sreepathi-ORNL (USA)
- Martin Koehler-DWD (Germany)

<u>Core of WGNE membership</u>: global (research) experts who are vested in enhancing the emerging capacities of operational meteorological modelling centers

World Climate Research Programme

Working Group on Numerical Experimentation - WGNE

Members

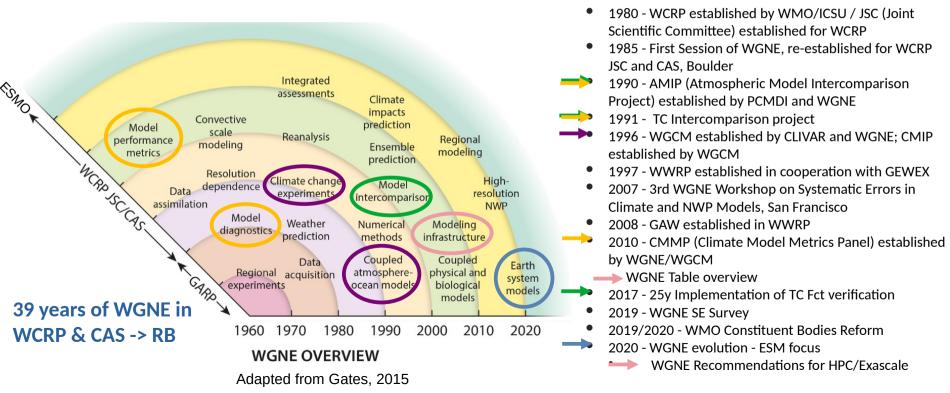

- Ariane Frassoni-INPE/CPTEC (Brazil, co-chair)
- Tim Graham-Met Office (UK)
- Romain Roehrig-CNRM/MeteoFrance (France)
- Peter Lauritzen-NCAR (USA)
- Fanglin Yang-NOAA/NCEP/EMC (USA)
- Mohau Jacob Mateyisi-CSIR (South Africa)
- Ankur Srivastava-IITM (India)

- Masashi Ujiie-JMA (Japan)
- Ron McTaggart-Cowan-ECCC (Canada)
- Inna Polichtchouk-ECMWF (UK)
- Eun-Hee Lee-KIAPS (S. Korea)
- Xingliang Li-CMA (China)
- Sarat Sreepathi-ORNL (USA)
- Martin Koehler-DWD (Germany)

<u>Core of WGNE membership</u>: global (research) experts who are vested in enhancing the emerging capacities of operational meteorological modelling centers

WGNE

The core of WGNE membership consists predominantly of global (research) experts who vested in are the enhancing emerging capacities of operational meteorological modelling centers



WGNE evolution

WGNE was stablished in 1968

"The main objectives for this working group were to set up a programme of numerical experiments and to coordinate the distribution of the work among the cooperating research groups." GARP, 1970

- Identify, prioritise, link and understand common systematic errors across time-scales in Earth system models
- Encourage quality assurance through facilitation of intercomparison and exchange of internationally accepted model evaluation information
- Harnessing emerging technologies & HPC

- Identify, prioritise, link and understand common systematic errors across time-scales in Earth system models
- Encourage quality assurance through facilitation of intercomparison and exchange of internationally accepted model evaluation information
- Harnessing emerging technologies & HPC

WGNE projects

Active projects

- South American Regional Model Verification Pilot project: Enhancing the assessment of regional forecasts to contribute to the EW4All initiative – jointly with JWGFVR
- The MJO SST sensitivity Model Intercomparison Project (MSMIP)
- Model Uncertainty Model Intercomparison Project (MUMIP)
- Ocean initialisation Project
- Evaluating the Impact of Aerosols on NWP and S2S

Previous projects

- The Surface Flux Intercomparison project
- Global model comparison: DIMOSIC Different models same initial conditions
- Intercomparison of precipitation forecasts by operational global models
- The Drag Project
- The Grey Zone project
- To cite a few ...

Systematic Errors in Weather and Climate Models

Workshop Summary: The 3rd WGI Workshop on Systematic Errors in Climate and NWP Models Peter Gleckler, Martin Miller, Jim Hack, D Bader, Ken Sperber, Karl Taylor April 22, 2008	AND CLIMATE MODELS Nature, Origins, and Ways Forward	Systematic Errors in Weather and Climate Models Challenges and Opportunities in Complex Coupled Modeling Systems Ariane Frassonie, Carolyn Reynolds, Nils Wedi, Zied Ben Bouallègue, Antonio Caetano Vaz Caltabiano, Barbara Casati, Jonathan A. Christophersen, Caio A. S. Coelho, Chiara De Falco, James D. Doyle, Lais G. Fernandes, Richard Forbes, Matthew A. Janiga, Daniel Klocke, Linus Magnusson, Ron McTaggart-Cowan, Morteza Pakdaman, Stephanie S. Rushley, Anne Verhoef, Fanglin Yang, and Günther Zängl				
Lower complexity in models helped to identify model errors with less resources	HighRes ocean models -> way to reduce long-standing warm/saline biases and errors in the Gulf Stream separation and in the deep ocean	HighRes ocean models -> improvements in the parameterization of turbulent flow reduce SE (biases in SST, sea surface height, salinity, and regional variability)				
Diurnal cycle of precipitation poorly simulated	Biases in the intensity, distribution, diurnal cycle and timing of max precipitation; transition regimes; organization HighRes models + stochastic perturbations can help to reduce SE	HighRes modeling - better rep of precip- related processes - timing, propagation, diurnal cycle Seasonal migration of the precipitation belts are better represented Errors in oceanic convection/precip & amplitude of precip diurnal cycle over land remain				

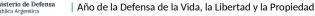
WGNE-systematic errors workshop

5th WGNE workshop on **systematic errors in weather and climate models,** Montreal, Canada, 2017

Systematic Errors in Weather and Climate Models: Nature, Origins, and Ways Forward, Zadra et al, 2017 <u>https://doi.org/10.1175/BAMS-D-17-0287.1</u>

6th WGNE workshop, Reading, ECMWF, 2022 <u>https://events.ecmwf.int/event/241</u> Systematic Errors in Weather and Climate Models: Challenges and Opportunities in Complex Coupled Modeling Systems, *Frassoni, Reynolds, Wedi et al 2023* <u>https://doi.org/10.1175/BAMS-D-23-0102.1</u>

7th WGNE workshop 2026 in South America


- Identify, prioritise, link and understand common systematic errors across time-scales in Earth system models
- Encourage quality assurance through facilitation of intercomparison and exchange of internationally accepted model evaluation information – Strong collaboration with the JWGFVR
- Harnessing emerging technologies & HPC

Statistical verification over South America

- Thanks to Task Team on Reviewing NWP Standardized Verification (TT-NWPSV)
- Proposition to expand the WMO official verification regions to uncovered regions of the world.
- Soon SA will have standard verification results which will be a great advance for our region!
- There are also tentative initiatives to facilitate verification of <u>regional</u> models

Thanks to R. De Elia and N. Wedi

Improving Errors in Weather and Climate Models

Forecast Errors in Weather and Climate Models 2013 → 2023

Met Office		1	Forecast range									
	Area	Parameter	T+24 RMSE	T+24 10-year RMSE change	% difference	T+72	T+72 10-year RMSE change	% difference	T+120	T+120 10-year RMSE change	% difference	
		pmsl	82,4417	67,0675	-22,9	211,6148	173,4242	-22,0	398,8079	354,9571	-12,4	
		500 hPa GPH	6,5992	5,244	-25,8	20,7134	17,0331	-21,6	41,8865	37,211	-12,6	
Tim Graham	NH	250 hPa wind	3,3205	2,8675	-15,8	7,5864	6,7353	-12,6	12,5156	11,6188	-7,7	
& colleagues		250 hPa temp	0,6437	0,5743	-12,1	1,4889	1,3209	-12,7	2,3724	2,1715	-9,3	
Based on a		850 hPa wind	1,6936	1,5059	-12,5	2,643	2,4518	-7,8	3,2955	3,1333	-5,2	
range of global	TR	250 hPa wind	3,0121	3,1105	3,2	5,3702	5,5818	3,8	7,0235	7,3234	4,1	
models		250 hPa temp	0,3827	0,4454	14,1	0,6646	0,7205	7,8	0,8236	0,8538	3,5	
		pmsl	96,6029	69,2929	-39,4	266,07	206,771	-28,7		435,204	-16,5	
		500 hPa GPH	8,343	6,1211	-36,3	26,2052	20,1679	-29,9	51,8982	44,0892	-17,7	
	SH 250 hPa wind 250 hPa temp		3,3525	2,952	-13,6	8,1274	6,9988	-16,1	13,6093	12,2837	-10,8	
			0,665	0,5999	-10,9	1,5812	1,3605	-16,2	2,5117	2,2335	-12,5	

Improving Errors in Weather and Climate Models

	Forecast Errors in Weather and Climate										
	Mo	odel	S	2013 -	→ 2023	3					
Met Office	Area	Parameter	Forecast range								
			T+24 RMSE	T+24 10-year RMSE change	% difference	T+72	T+72 10-year RMSE change	% difference	T+120	T+120 10-year RMSE change	% difference
		pmsl	82,4417	67,0675	-22,9	211,6148	173,4242	-22,0	398,8079	354,9571	-12,4
		500 hPa									
	NH	C711	0,5552	5,244	-25,0	20,7134	17,0331	-21,0	41,0005	57,211	12,0
Tim Graham		250 hPa wind	3,3205	2,8675	-15,8	7,5864	6,7353	-12,6	12,5156	11,6188	-7,7
& colleagues		250 hPa temp	0,6437	0,5743	-12,1	1,4889	1,3209	-12,7	2,3724	2,1715	-9,3
Based on a		850 hPa wind	1,6936	1,5059	-12,5	2,643	2,4518	-7,8	3,2955	3,1333	-5,2
range of global models	TR	250 hPa wind	3,0121	3,1105	3,2	5,3702	5,5818	3,8	7,0235	7,3234	4,1
models		250 hPa temp	0.3827	0.4454	14.1	0.6646	0.7205	7.8	0.8236	0.8538	3.5
		pmsl	96,6029	69,2929	-39,4	266,07	206,771	-28,7	507,1582	435,204	-16,5
		500 hPa		<i></i>	26.2	00.0050			54 0000		47.7
·	SH	250 hPa	0,545	0,1211	50,5	20,2002	20,2075	20,0	51,0502	44,0092	
		wind	3,3525	2,952	-13,6	8,1274	6,9988	-16,1	13,6093	12,2837	-10,8
		250 hPa temp	0,665	0,5999	-10,9	1,5812	1,3605	-16,2	2,5117	2,2335	-12,5

- Identify, prioritise, link and understand common systematic errors across time-scales in Earth system models
- Encourage quality assurance through facilitation of intercomparison and exchange of internationally accepted model evaluation information
- Harnessing emerging technologies & HPC

Emerging technologies & HPC & R2O

2

3

4

6

7

CONCEPT NOTES

The Research Board has drafted six concept notes [-]

- Advancing Earth System
 Modelling DRAFT
- Advancing Earth System
 Observations DRAFT
- Data Handling and the Application of Artificial Intelligence in Environmental M...
- Innovation in Regions -DRAFT
- Science for Services -DRAFT
- Exascale Computing and Data

WMO Concept Note on Exascale Computing and Data

© World Meteorological Organization, 2023

Concept note on use of AI and data exploitation in environmental modelling

1 Concept note on use of AI and data exploitation in environmental modelling

- WMO Research Board Task Team on Exascale, Data Handling and AI
- Contributing authors: Adrian Hines, Bubacar Bah, Dominique Berod, Veronique Bouchet, Pascale Braconnot, Wenchao Cao, Mark Goyett, Tim Graham, Yuki Honda, Emile Jansons,
- 5 Michel Jean, Bryan Lawrence, Jürg Luterbacher, Kris Rowe, Martin Schultz, Martin Visbeck,

Affiliations in the Acknowledgments

September 13, 2021

C1 Advancing Earth System Modelling

Drafting team: Andy Brown, Veronique Bouchet, Antonio Busalacchi, Gregory Carmichael, Chris Davis, Francisco Doblas Reyes, Yihong Duan, Greg Flato, Sarah Jones, Craig McLean, Jerry Meehl, M Rajeevan, Carolyn Reynolds, Paolo Ruti, Catherine Senior, Ranjeet Sokhi, Martin Visbeck, Matt Wheeler, Keith Williams

Reducing Errors in Weather and Climate Models

Conclusions for the 2024-2027 timeframe

- **1. Significant improvements over last decade** on high-impact weather and multi-model hemispheric scores
- 2. Identified hazards **benefit from progress in land-surface modelling, higher horizontal resolution and integration with hydrological modelling** within land-surface schemes
- 3. ML/AI can improve systematic errors, timeliness of delivery and uncertainty estimation
- 4. EW4All challenges WMCs readiness to make available open Earth-system data and accelerate novel access patterns (including compute)
- Need to actively involve and enable WMO regions to improve regional verification and comparison to global simulations, enable regionally conducted, event-based verification (e.g. WGNE/JWGFVR pilot project)

WGNE terms of reference

Identify, prioritise, link and understand common systematic errors and their solutions across different timescales in coupled ESMs, sharing this information across the model development community.

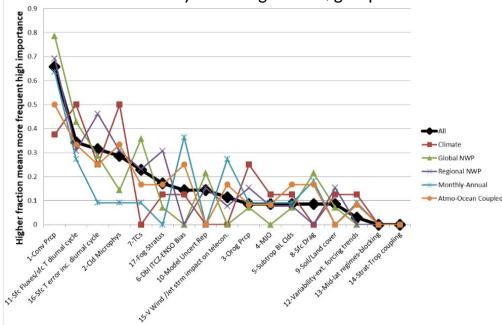
Assess the use of innovative approaches, in particular machine learning for Earth system modelling Provide guidance to utilise exascale computing for Earth system modelling, e.g. to overcome scalability issues and capture trends.

Identify technological and scientific trends in Earth system modelling and share information on trends in global data-processing and forecasting systems across major modelling centers. Share information and provide advice on the right level of complexity required in increasingly coupled ESMs for a particular application.

Encourage quality assurance through facilitation of intercomparison and exchange of internationally accepted model evaluation information relevant to their efficient and accurate use in operational weather & climate services.

Share knowledge on the development & trends in R2O processes, operational NWP and climate services with ESMO and the Research Board.

Thank you!

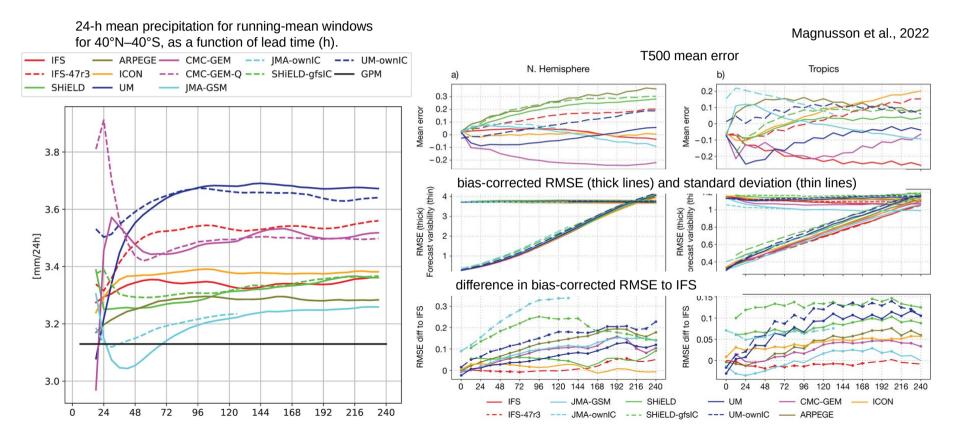

Extra slides

Systematic Errors in Weather and Climate Models Survey

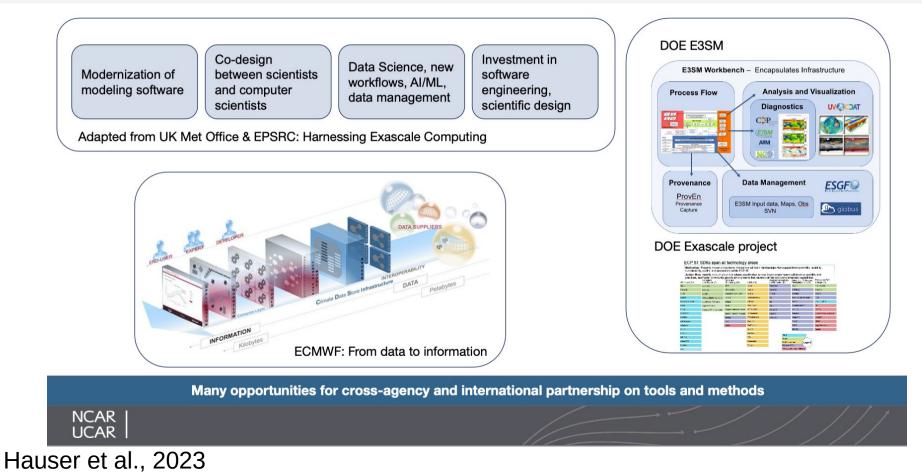
Frequency of higher importance given to an issue by modeling centres/groups

The results are sorted by the fraction for all entries, from most frequent (most often ranked as important) to least frequent (least often ranked as important)

For all entries (black line)


- 1st Convection/precipitation
- 2nd Sfc fluxes/sfc temp diurnal cycle
- 3rd Sfc temp errors including diurnal cycle
- 4th Cloud microphysics
- 5th Tropical cyclones

WGNE projects


Active projects Global model comparison: DIMOSIC Different models - same initial conditions

Emerging technologies & HPC & R2O

CECMWF

Forecast Errors in Weather and Climate Models 2013 → 2023

Feature	Current error or score (2023)	Error or score 10 years ago (2013)	Approximate improvement in 10 years	Comments
Tropical cyclone position	MAE (D+3) = 160 km MAE (D+5) = 250 km	MAE (D+3) = 180 km MAE (D+5) = 350 km	11% 29%	
Tropical cyclone intensity (central pressure)	MAE (D+3) = 11 hPa	MAE (D+3) = 15 hPa	27%	
Strong wind	ROCS (D+5) = 0.77	ROCS (D+5) = 0.72	6%	EFI (95th percentile) RO skill in Europe
Significant wave height	SI (D+3) = 20% SI (D+5) = 30%	SI (D+3) = 23% SI (D+5) = 33%	13% 9%	SI = Scatter Index (error standard deviation divided by obs) in %
High temperatures	ROCS (D+5) = 0.92	ROCS (D+5) = 0.88	5%	EFI (95th percentile) RO skill in Europe
Heavy rainfall	ROCS (D+5) = 0.68	ROCS (D+5) = 0.63	8%	EFI (95th percentile) RO skill in Europe
Heavy rainfall	ETS (D+3) = 0.155 ETS (D+5) = 0.100	ETS (D+3) = 0.125 ETS (D+5) = 0.075	24% 30%	Equitable Threat Score (ETS) for >50mm/24h in N. Extratropics

High Impact weather error reduction

Thomas Haiden

Selected qualitative conclusions for the 2024-2027 time-scale (EW4All Initiative):

- Constraining errors on troposphere-stratosphere coupling and improved predictability
- Amplitude of diurnal cycle of precipitation over land remains a challenge
- Reduction in systematic errors of upper ocean (SST, salinity, Gulf stream separation) and of some deep ocean properties
- Substantial errors in high-latitudes remain
- Substantial MJO simulation errors (and convective boundary layers in coupled models) remain
- Substantially improved tropical cyclone track and intensity forecasts, in part through improved air-sea coupling
- Improved hydrological and flood prediction and improved representation of vegetation and soil, and
- snow, in part based on more up-to-date mapping information
- Increased complexity of very-high resolution simulations within coupled ocean-atmosphere-land
- systems give also rise to new systematic errors...
- Bias correction of systematic errors through ML/AI advances
- Recommendations to advance on systematic error reduction including data assimilation, machine
- learning, and a hierarchy of models supported by standardised and widely available observational data

Systematic Errors in Weather and Climate Models 6th WGNE WSE recommendations

Models

High-res/digital twins: Useful for some problems - process studies, coarse graining (e.g., GWs, momentum budgets) Model evaluation using high res obs, subsurface obs (ocean) and process-relevant obs (TEAM-X, INCUS ...) Employ hierarchies of models, including single column models,

constrained components, relaxation, nudging)

Carefully consider coupling (physics-dynamics, physics-physics, cross component) List of physical properties that must hold (e.g., mass conservation) Drive software quality

Modular model developments

Techniques

Diagnostics from DA can effectively identify systematic errors and constrain parameters, inline bias correction ML/AI: Improve model behavior, identify flow-dependent systematic errors, detect causal connections In-line bias correction: consider risks/benefits of inline bias correction vs. model improvement Weather - Climate communication (verification, AMIP and Transpose AMIP) Km-scale global coupled models should engage and learn from mesoscale modeling community **Ensemble sensitivity**, parameter exploration, perturbation experiments, adjoint sensitivity, relaxation-nudging

Data sets

Central repository and inventory of field campaign data (ease of use)

Error estimates for reanalysis and observation

Modeler input for field campaigns Observations of data-poor regions (ocean, land, sea-ice) and coupled observations

Data available for different levels of granularity

- Review the WGNE
 systematic error survey
- Overview paper of biases across timescales
- Virtual discussions by subgroups

https://journals.ametsoc.org/view/journals/bams/104/9/BAMS-D-23-0102.1.xml