Impetus4Change (I4C)

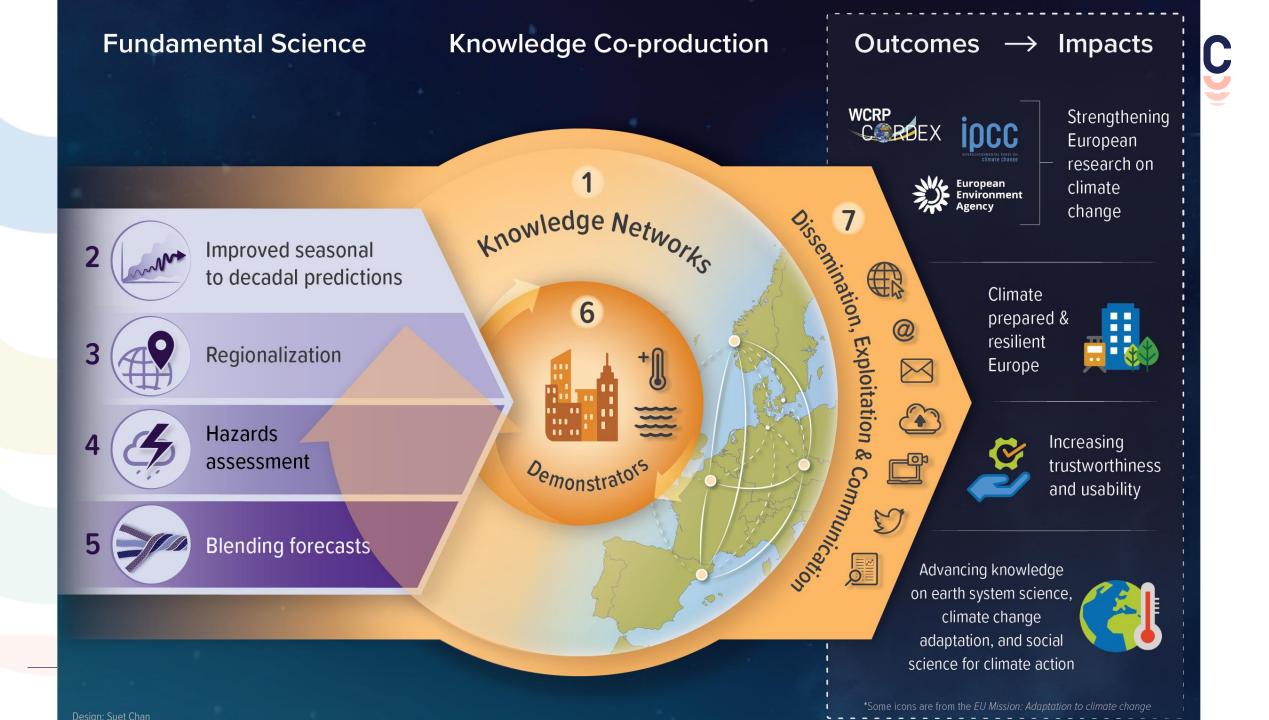
Where urban practitioners, social scientists and modellers co-create novel climate knowledge

aka Improving near-term climate predictions for societal transformation

Dragana Bojovic | Barcelona Supercomputing Center

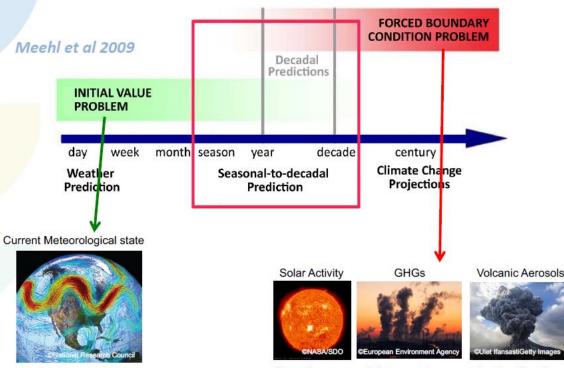
impetus4change.eu 😏 @l4C_eu

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101081555

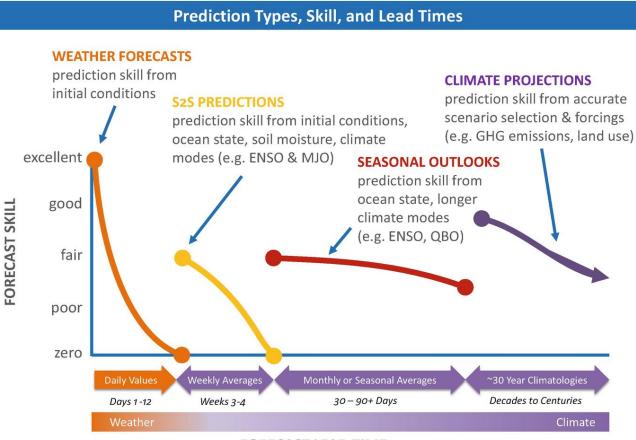


Barcelona Supercomputing Center Centro Nacional de Supercomputación

I4C Partners & Collaborators



Improving S2D predictions (UiB)

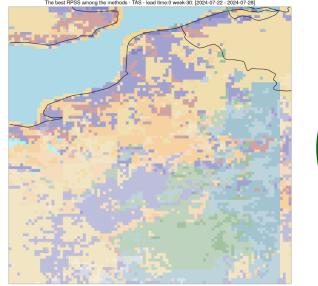

Understanding limitations in current prediction systems
Novel filtering, supermodeling, and hybrid methods to mitigate model errors
Performing and evaluating a new set of improved S2D predictions

Regionalization of climate predictions (CSIC)

- Statistical adjustment and downscaling
- CPRCM regional simulations
- CPRCM statistical emulators

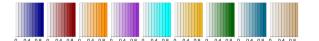
FORECAST LEAD TIME

S2S downscaling - Case study




Purpose: Delivering high-resolution predictions for the weeks of the 2024 Paris Olympics

Planned task: Conducting a sensitivity analysis to identify the optimal statistical downscaling methodology for the target weeks. The chosen method will be applied to downscale the forecast when the data is available.


Provision time: 1, 2, 3, 4 weeks before the target weeks

Variables: Temperature (max, min and mean) Temporal resolution of the outputs: Weekly Prediction system: CFSv2 (Res:~0.937°x~0.937°) Reference data: CERRA/CERRALand (0.05° x 0.05°)

analogs-1 (20.07%) analogs-15 (5.1%) analogs-15 (5.1%) intbc-bic-ewmos (0%) intbc-cor-ewmos (0.24%) intfr-4nn (32.18%) intfr-din-basic (11.53%) intfr-cor-basic (16.49%) logreg-bic-ens_mean (f

Summary

Paris olympics: Fri, Jul 26, 2024 – Sun, Aug 11, 2024

	Skill of the provided information					
	04.07.2024	11.07.2024	18.07.2024	25.07.2024	01.08.2024	
Week 30: 26, 27, 28 of July				x	x	
Week 31: 29, 30, 31 - July, 1, 2, 3, 4 - Aug	/				x	
Week 32: 5, 6, 7, 8, 9, 10, 11 - Aug						

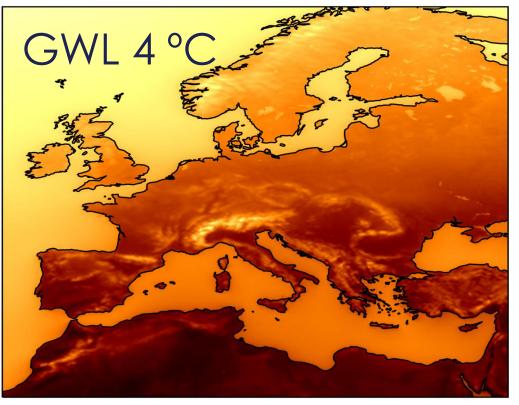
Worse than climatology		
Low		
Moderate		
High		

Barcelona Supercomputing Center Centro Nacional de Supercomputación Use seasonal predictions !!!

Indices in EURO-CORDEX

50

40


30

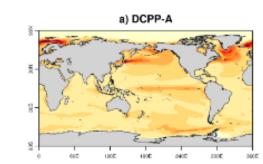
20

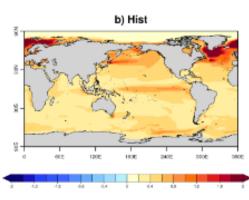
10

- > 0.11° (~11 km) horizontal resolution
- 67 simulations
 8 GCMs
 12 ensemble runs total
 15 RCMs
- 19 general indices and 4 demonstratorspecific indices
- Indices as timeseries of 1980-2100 and for Global Warming Levels (GWLs)
- Indices available in NetCDF format

HW Annual mean across 67 simulations

Blending forecast across timescales




WP5

Unveiling inconsistencies between predictions and projections
Develop multi-method blending strategy

Two-phases approach

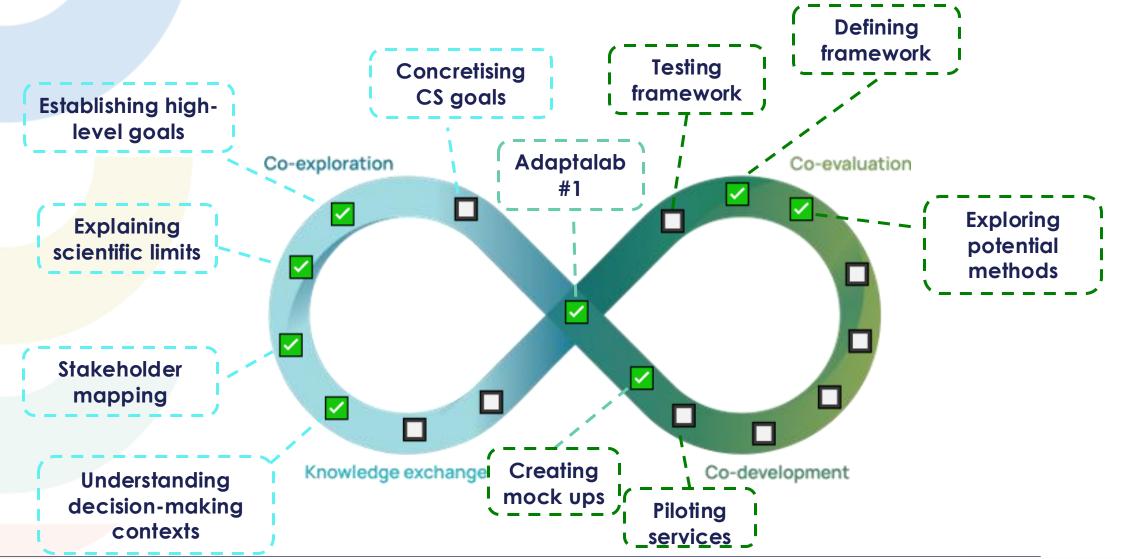
Intra-ensemble standard deviation for the surface temperature anomaly patterns

Phase 1: Identify inconsistencies to be tackled by blending

- 1. Characterize probabilistic and deterministic properties in the ensembles of predictions and projections (see figure)
- 2. Identification of the main inconsistencies in terms of the mean state and variability mode fingerprints

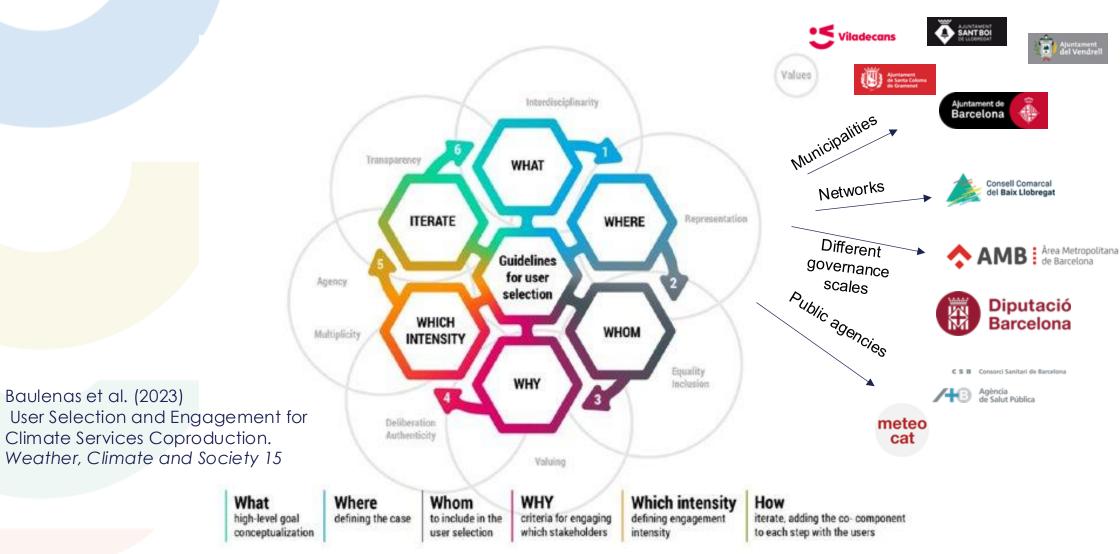
Phase 2: Develop different blending strategies

3. Blending predictions and projections based on similarities in (1) their mean state, (2) the phases of selected modes of climate variability and/or (3) their statistical properties



WP6 Coproduction of I4C Demonstrators

The coproduction process in I4C



Stakeholder mapping and co-exploration

Co-exploration and stakeholder mapping

Co-design in Adaptalabs

Urban greening: parks, gardens, trees (1 of 2)

IMPETUS 4 CHANGE

Climate information that supports efforts to increase the coverage and resilience of urban green spaces

What could we collaborate on?

Supporting decisions at different timescales, and integrating with impact models (beyond I4C), for example:

- When to plant new trees?
- Where / when are future drought risks?
- How climate-compatible are existing & planned green spaces?
- What are future irrigation requirements?
- How can green spaces contribute to urban cooling / impacted by UHI?
- How will biodiversity be impacted in the future?

A deeper understanding of heat (2 of 2)

IMPETUS 4 CHANGE

Climate information that provides a more holistic understanding of how urban heat will be affected by the combination of climate change and climate variation.

What do we need from you?

Some examples:

- Important thresholds (e.g. <u>day time</u> / <u>night time</u> temperatures and humidity levels that trigger protocols)
- Implementation dates (e.g. when climate shelters are operational, when time-shifting is permitted, when are streets resurfaced)
- Decision dates when implementation actions are decided (and reviewed)
- Input requirements for impact models

Who is this for?

<u>Collaborators</u> interested in, or responsible, for:

- Urban planning
- Public (environmental) health
- Housing
- Economic activity
- Energy poverty

What else could it lead to/interact with?

Example impact models and complementary data/information:

- High-resolution thermal mapping (e.g. street scale or UHI)
- Scenario testing for resilience interventions (green spaces, climate refuges etc.)
- Identifying at-risk locations (elderly residences, hospitals, schools, lowquality housing, tourist hubs etc.)
- Mortality/morbidity/well-being models

S2S for Barcelona

- Seasonal information to support climate shelters management in MAB

- S2S information for preparing and managing casals' activities in municipalities

- Greening Granollers
- S2S for tree planting

PREDICCIONS CLIMÀTIQUES A CURT TERMINI PER A LA PRESA DE DECISIONS

DINS EL CONTEXT DE CRISI CLIMÀTICA S'ESPERA UN INCREMENT D'ESDEVENIMENTS CLIMÀTICS MÉS ALEATORIS I EXTREMS. PER AQUEST MOTIU, ÉS NECESSARI DISPOSAR DE NOUS INSTRUMENTS QUE PROPORCIONIN PREDICCIONS A CURT TERMINI PER DOMAR SUPORT A LES DECISIONS D'ADAPTACIÓ ACTUALS I FUTURES.

Sobre 14C

Impetus4Change (I4C) és un projecte Horizon Europe format per més de 20 entitats líders en la recerca climàtica.

Per què necessitem prediccions climàtiques a curt termini?

Les previsions meteorològiques donen informació sobre els propers 7 dies aproximadament i les projeccions climàtiques proporcionen dades a llara termini.

- Les prediccions subestacionals poden predir temperatures (donant informació fins a 4 setmanes vista) per donar suport a la planificació de riscos relacionats amb la calor.
- Els models climàtics descriuen què succeirà tenint en compte el canvi climàtic i la variabilitat climàtica a diferents escales temporals.

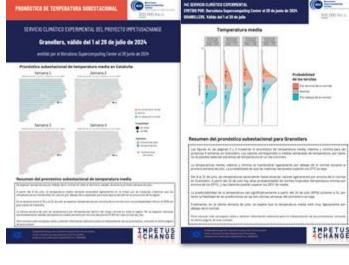
Els nostres objectius:

- Donar suport en la presa de decisions en la implementació d'accions d'adaptació allà on els impactes climàtics són més severs.
- Co-dissenyar amb els usuaris els serveis climàtics a escala local i regional.
 Millorar la qualitat, l'accessibilitat i la
- usabilitat de la informació climàtica a curt termini.

- Accés al nou pilot de serveis climàtics.
 Amb prediccions de temperatures
- setmanals de fins a 4 setmanes.
- Dades que inclouen valors màxims, mínims i mitjans.
- Amb avaluació de la qualitat de la predicció.
- A escala local, a resolucions de fins a 5 km.
- Finançat dins el marc del projecte I4C.

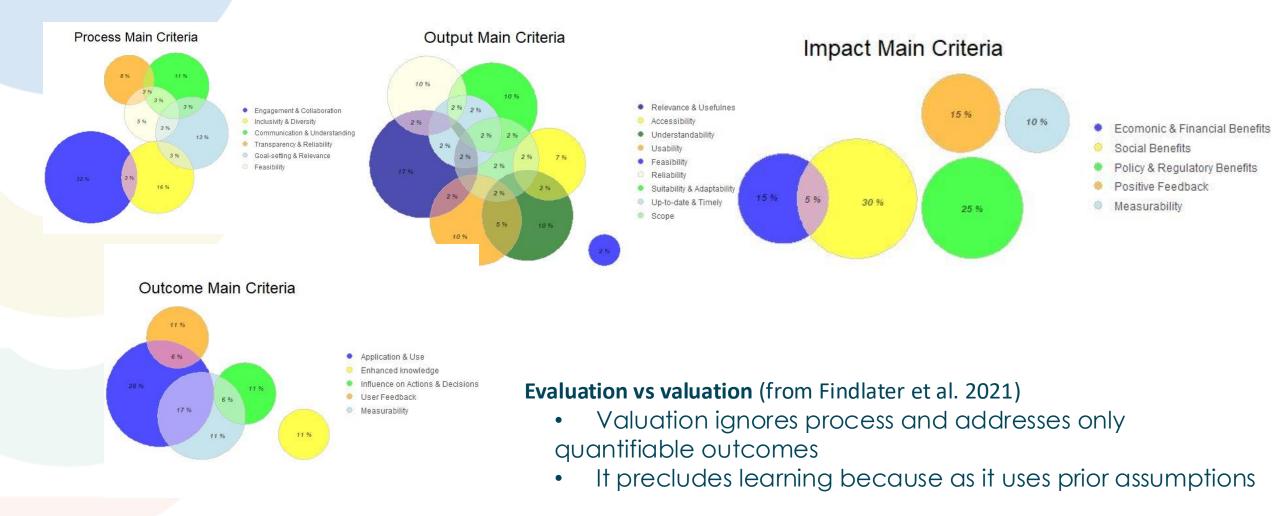
Com ho fem?

- Proporcionem fins a 5 prediccions.
 Cada predicció és de fins a 4 setmanes
- vista. • Proporcionem sessions de formació. • Per a un període temporal que va de juny a iuliol.


Estàs interessat?

Aquestes prediccions climàtiques poden donar suport a les teves decisions? Pots proporcionar-nos informació per a la millora del servei?

No ho dubtis, contacta'ns: • Dragana Bojovic (dragana.bojovic@bsc.es)


Pablo Martinez (pablo@300000kms.net)

Co-evaluation

THANKS!

Website <u>https://impetus4change.eu/</u> Twitter: <u>@I4C_eu</u> LinkedIn: <u>Impetus4Change</u>