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How can ML help weather/climate models?

Make global weather and climate models:

● more accurate

● faster 

● more affordable/accessible 

Three general strategies (atmospheric focus):

● Hybrid: ML replaces or corrects parts of the 

atmospheric model

● ML for post-processing bias correction and/or 

downscaling

● Full model emulation: machine learning of entire 

global atmospheric evolution

Physics param.
replacement

Bias 
correction

Full model 
emulation

What is the ML responsible for?

Hybrid ML

All dynamics and physics 
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Existing ML forecasts are often not stable and/or accurate beyond 
~2 weeks

Karlbauer et al. 2024; https://arxiv.org/abs/2311.06253
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https://arxiv.org/abs/2311.06253


Our approach: ACE (Ai2 Climate Emulator)

● Train on climate model output, in addition to ERA5

○ Want to use data from diverse range of climates (global warming etc.)

● Start simple… initially we used climatological SST and fixed external forcing

○ For now, use relatively coarse 1° resolution

○ I will also show results with varying external forcings (historical and increased 

CO2)

● Provide boundary conditions (insolation, SSTs) as inputs to ML model

● Focus on long-term stability
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Training Setup
Loss function: mean-squared error of 6-hour forecast computed over all the output 

variables (for ACE2, accumulated over 2 forward steps)

(forcing + prognostic vars) x 180 x 360

Humidity Wind

Temperature

Input at time t

(prognostic + diagnostic vars) x 180 x 360

Prediction of  t + 6 hours
Humidity Wind

TemperatureSurface pressure Down SW sfc rad flux

Showing subset of inputs/outputs

SFNO*

*SFNO: Spherical Fourier Neural Operator from 
Bonev et al., 2023 arxiv.org/abs/2306.03838
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https://arxiv.org/abs/2306.03838


Prognostic:
→ horizontal winds, temperature, 
specific total water, skin temperature 
of land/sea-ice, surface pressure

Forcing:
→ insolation, sea surface temperature, 
surface type fractions, elevation

Diagnostic:
→ precipitation, TOA and surface 
radiative fluxes, surface turbulent 
heat/moisture fluxes
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Our variable set



Training data
Generate training data by saving output from FV3GFS or SHiELD model runs at C96 (approx 1°) resolution.

We coarsen to 8 terrain-following (hybrid sigma-pressure) finite volume layers on a 1° Gaussian grid for 
compatibility with SFNO, better speed, and reduced storage

● Mass and moisture are conserved in vertical coarsening, allowing calculation of exact budgets.

1. ACE: Annually-repeating SST forcing (climSST)
● 100 years of training data, 10 years of validation
● Each year is an independent sample of the same climate forcing

1. ACE2: Historical SSTs (AMIP)
● ERA5 or an SHiELD AMIP Ensemble 

2. ACE2: Slab ocean with CO2 forcing (ongoing work)
● Present-day CO2, 2xCO2 and 4xCO2, with a simple slab ocean
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ACE (v1) Results
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Presented at NeurIPS Tackling Climate Change with AI workshop 2023. 

Paper on arxiv: Watt-Meyer et al. (2023)

https://arxiv.org/abs/2310.02074


ACE is stable, with an accurate seasonal cycle!

Temperature 
(boundary 

layer average)

Total Water Path 
(vertically integrated 

moisture)
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Watt-Meyer et al. (2023)

As far as we can tell, indefinitely stable (will show 1000 year simulations later)

https://arxiv.org/abs/2310.02074


Realistic weather variability

Outgoing longwave radiation (OLR) for first 100 days of simulation

ACE (prediction) FV3GFS (target)

Mostly realistic OLR despite model not explicitly prognosing clouds! 
But also see evidence of overly smooth prediction. 10



Excellent climate accuracy

10 year time-averaged precipitation rate bias

Natural variability of the 
system (noise floor)

2x coarser physics-based model
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Watt-Meyer et al. (2023)

https://arxiv.org/abs/2310.02074


10 year time-averaged precipitation rate bias

Excellent climate accuracy

Natural variability of the 
system (noise floor)

2x coarser physics-based model
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Watt-Meyer et al. (2023)

ACE outperforms the 2x-coarser 
baseline on 90% of the output variables 

(time-mean pattern RMSE)

https://arxiv.org/abs/2310.02074


Physical consistency

Change in Total Water Path

Surface evaporation rate

Surface precipitation rate 

Horizontal moisture transport

Balance of all these terms

Should be zero!

Plot is showing a snapshot 1 year into simulation

13Watt-Meyer et al. (2023)

https://arxiv.org/abs/2310.02074


Physical consistency — global mean
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● Despite the column-budget of moisture being very nearly closed, when we 
compute the global mean there are non-trivial budget violations

Global mean surface 
pressure due to dry air onlyViolation of global mean moisture budget

Watt-Meyer et al. (2023)

https://arxiv.org/abs/2310.02074


Post-step correctors applied to output, during training 

and inference:

● Mass budget closed by adding a time-dependent 

spatially-constant correction to surface pressure 

(very small: ~5 Pa)

diagnostics
t=6h

state
t=0

state
t=6h

forcing
t=0

state
t=6h

corrector

Loss

diagnostics
t=6h

Enforcing hard budget constraints

Constraint: 

Overline: global mean
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Post-step correctors applied to output, during training 

and inference:

● Global water budget closed by multiplying 

precipitation by a constant

diagnostics
t=6h

state
t=0

state
t=6h

forcing
t=0

state
t=6h

corrector

Loss

diagnostics
t=6h

Enforcing hard budget constraints

Constraint: 

Overline: global mean
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Physical consistency 
● These constraints (in particular dry air mass constraint!) reduce surface pressure 

drift
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● Architecture made a difference
○ SFNO better than the original 2D FFT based FourCastNet

● “Residual” normalization
○ Account for the different timescales of different variables

● Choice of variables, especially forcing inputs
○ Not surprisingly, insolation is key for seasonal cycle

○ Somewhat more surprisingly, constant topography input also helped

Why is ACE stable?
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ACE2 AMIP-based Emulators
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Submitting soon… preprint will be on arxiv in next 2 weeks



Moving forward: realistic historical SSTs
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Now switching two new training 
dataset:

1. ERA5 over 1940-2020
2. C96 SHiELD AMIP simulation 

(two realizations) also 1940-
2020

Training setup is similar to what was 
previously described, but now add CO2

as input variable and also include some 
new output variables

ACE-climSST is the model discussed in previous sections (trained 
on climSST dataset). Fails to get trend when forced with historical 
SST.



ACE2 has low time-mean AMIP biases on ERA5 and SHiELD
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ACE2’s biases relative to its target dataset are much smaller than the differences between SHiELD 
and ERA5.

Based on 2001-2010 period



Response to El Niño SST variability very accurate

24Based on 2001-2010 period



Climate skill - Tropical cyclone distribution

Caveat: for ERA5, SHiELD and ACE2-
ERA5 we are using a cyclone tracking 
applied to 1° resolution data.

Global # of cyclones is highly tunable 
based on parameters used for 
cyclone tracking, so hard to compare 
directly to IBTrACS.

But differences between ERA5, 
SHiELD and ACE2-ERA5, as well as 
basin-to-basin differences, are 
robust to changes in tracking.

Based on 2001-2010 period



Tropical precip 
variability



Climate skill - ERA5 polar stratosphere

Based on 2001-2010 period

Northern Hemisphere 
(60°N)

Zonal mean zonal wind averaged from ~50hPa to TOA

Southern Hemisphere 
(60°S)



ACE2-SOM  (Slab ocean model)
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Preprint coming soon.



● Generate training/validation data from three 50-year 

simulations:

○ 1xCO2 (present-day CO2 concentration)

○ 2xCO2 (two times present-day CO2

concentration)

○ 4xCO2 (four times present-day CO2

concentration)

● Train ACE-SOM with CO2 concentration added as an 

input variable.
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Coupled modeling: interactive slab ocean

Q

Ts

h mixed layer

deep ocean 
(reacts slowly, 

so ignored)

Fnet (predicted by atmosphere model)

Source: Absorbed sunlight + infrared
Sink: Turbulent heat loss + emitted IR 



ACE2-SOM is stable in both in-sample and out-of-sample 
equilibrium climates

● Results are from five-member initial condition ensembles of 10-year 100 km SHiELD-SOM (our target model) 

and ACE2-SOM simulations in each climate (20 simulations total per model).

● ACE2-SOM did not see data from the 3xCO2 climate during training.



ACE-SOM is stable and accurate in multiple climates

The global warming pattern matches that of the physics-based model, capturing robust features 
like amplified warming over land.
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Out of sample test:  Abrupt 4xCO2 increase

● ML-controlled fields (all but ocean surface temperature) rapidly shift to the 4xCO2 regime—clearly unrealistic.

● Ocean surface temperature, aided some by its prescribed thermal inertia, warms more slowly, approximately in accordance with 

the reference.

● ACE2-SOM still finds the right steady state, helped by its equilibrium 4xCO2 training.



Computational cost

C96 SHiELD ACE2

Hardware 864 CPU cores 

(AMD EPYC 7H12)

1 80GB NVIDIA H100

Simulated years per wall clock day ~12 ~1500

Energy cost per simulated year [Wh] 8250 11.2
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● Training time for each ACE2 model was about 4.5 days on eight 80GB NVIDIA H100s (240 

GPU-hours)

Inference throughput and energy cost



Summary

● We have developed a long-term stable purely ML-based atmospheric model that is suitable 

for climate prediction

● Faithfully reproduces reference model’s climate

○ Tested in climSST, AMIP, and slab-ocean configurations with positive results

○ Captures aspects of forced response to GHG and ocean-atm variability (ENSO)

● Much cheaper/easier to run than reference model itself!
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Code, data and model checkpoints are all available!
See github.com/ai2cm/ace

Papers: Watt-Meyer et al. 2023; Duncan et al. 2024

https://github.com/ai2cm/ace
https://arxiv.org/abs/2310.02074
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2024JH000136


Extra Slides
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● Climate performance is not entirely robust across random seed or epoch

● A key lesson: track the metric you care about! Throughout training.

● E.g. we do long (up to 5 year) forecasts after every epoch of training

○ Inference is so fast, this typically only adds ~10% to total training time

Our training strategy is not perfect
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How much data? (more is always better…)

38Watt-Meyer et al. (2023)

https://arxiv.org/abs/2310.02074


How much data? (more is always better…)
● Depends a bit on the variable

○ Stratosphere varies more slowly (~10-30 day radiative relaxation timescale) than 
the troposphere (~5 day weather timescale)

○ A fixed # of years of data will have fewer independent samples of stratosphere 
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Label indicates 
length of training 
dataset

Stratospheric temperature 6-
hour RMSE

Near-surface temperature 6-
hour RMSE

Watt-Meyer et al. (2023)

https://arxiv.org/abs/2310.02074


Climate skill - ERA5 tropical cyclone distribution

notebook
Based on 2001-2010 period

This would only go in appendix.

Shows that using the true historical SST 
dataset versus a climatological SST dataset 
doesn’t make a difference for TC statistics.

https://github.com/ai2cm/ace2-paper/blob/new-era5-eval/notebooks/era5_tropical_cyclones.ipynb
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