ACE: a fast, skillful learned global atmospheric model for climate prediction

Oliver Watt-Meyer, Lead Research Scientist, Climate Modeling WGNE39-WGSIP 25 Annual Meeting November 7, 2024

1

How can ML help weather/climate models?

Make global weather and climate models:

- more accurate
- faster
- more affordable/accessible

Three general strategies (atmospheric focus):

- Hybrid: ML replaces or corrects parts of the atmospheric model
- ML for post-processing bias correction and/or downscaling
- **Full model emulation: machine learning of entire global atmospheric evolution**

What is the ML responsible for?

Existing ML forecasts are often not stable and/or accurate beyond ~2 weeks

Karlbauer et al. 2024;<https://arxiv.org/abs/2311.06253>

Our approach: ACE (Ai2 Climate Emulator)

- Train on climate model output, in addition to ERA5
	- Want to use data from diverse range of climates (global warming etc.)
- Start simple... initially we used climatological SST and fixed external forcing
	- For now, use relatively coarse 1° resolution
	- I will also show results with varying external forcings (historical and increased CO2)
- Provide boundary conditions (insolation, SSTs) as inputs to ML model
- **Focus on long-term stability**

Loss function: mean-squared error of 6-hour forecast computed over all the output variables (for ACE2, accumulated over 2 forward steps)

Input at time *t* **Prediction of** *t* **+ 6 hours SFNO* Humidity Wind Humidity Wind Surface pressure Temperature Down SW sfc rad flux Temperature** $f(\mathbf{u};\theta)$ (**forcing** + **prognostic** vars) x 180 x 360 (**prognostic** + **diagnostic** vars) x 180 x 360

Showing subset of inputs/outputs

***SFNO**: Spherical Fourier Neural Operator from Bonev et al., 2023 arxiv.org/abs/2306.03838

Our variable set

Training data

Generate training data by saving output from FV3GFS or SHiELD model runs at C96 (approx 1°) resolution.

We coarsen to **8 terrain-following (hybrid sigma-pressure) finite volume** layers on a 1° Gaussian grid for compatibility with SFNO, better speed, and reduced storage

- Mass and moisture are conserved in vertical coarsening, allowing calculation of exact budgets.
- 1. ACE: Annually-repeating SST forcing (climSST)
	- 100 years of training data, 10 years of validation
	- Each year is an independent sample of the same climate forcing
- 1. ACE2: Historical SSTs (AMIP)
	- **ERA5 or an SHIFLD AMIP Ensemble**
- 2. $ACE2$: Slab ocean with $CO₂$ forcing (ongoing work)
	- Present-day CO_2 , 2xCO₂ and 4xCO₂, with a simple slab ocean

ACE (v1) Results

Presented at NeurIPS Tackling Climate Change with AI workshop 2023. Paper on arxiv: [Watt-Meyer et al. \(2023\)](https://arxiv.org/abs/2310.02074)

ACE is stable, with an accurate seasonal cycle!

As far as we can tell, indefinitely stable (will show 1000 year simulations later)

[Watt-Meyer et al. \(2023\)](https://arxiv.org/abs/2310.02074)

Realistic weather variability

Outgoing longwave radiation (OLR) for first 100 days of simulation

ACE (prediction) and the set of the set of the FV3GFS (target)

Mostly realistic OLR despite model not explicitly prognosing clouds! But also see evidence of overly smooth prediction.

Excellent climate accuracy

10 year time-averaged precipitation rate bias

system (noise floor)

¹¹ [Watt-Meyer et al. \(2023\)](https://arxiv.org/abs/2310.02074)

Excellent climate accuracy

10 year time-averaged precipitation rate bias

reference ACE. baseline RMSE=0.24, bias=-0.00 RMSE=0.47, bias=-0.03 RMSE=0.81, bias=-0.06

> **ACE outperforms the 2x-coarser baseline on 90% of the output variables** (time-mean pattern RMSE)

Natural variability of the system (noise floor)

2x coarser physics-based model

Physical consistency

 $Ai2$

Plot is showing a snapshot 1 year into simulation

<u>Watt[-Meyer et al. \(2023\)](https://arxiv.org/abs/2310.02074)</u> 13

Physical consistency — global mean

Despite the column-budget of moisture being very nearly closed, when we compute the global mean there are non-trivial budget violations

Violation of global mean moisture budget pressure due to dry air only Global mean moisture budget
violation [mm/day] 0.10 to dry 98360 pressure due t
air only [Pa] 0.05 98340 reference 0.00 ACE 98320 -0.05 Surface 98300 reference -0.10 ACE 98280 1000 2000 1000 2000 Ω 3000 Ω 3000 time [days since init] time [days since init]

[Watt-Meyer et al. \(2023\)](https://arxiv.org/abs/2310.02074)

Global mean surface

Enforcing hard budget constraints

Post-step correctors applied to output, during training and inference:

● Mass budget closed by adding a time-dependent spatially-constant correction to surface pressure (very small: ~5 Pa)

$$
\text{Constraint:} \quad \overline{p_s^{dry}(t+\Delta t)} = \overline{p_s^{dry}(t)}
$$

$$
p_s^{dry} = p_s - \sum_k q_k \Delta p_k
$$

Overline: global mean

Enforcing hard budget constraints

Post-step correctors applied to output, during training and inference:

• Global water budget closed by multiplying
precision by a constant
state

$$
t=0
$$

state
 $t=6h$
state
 $t=6h$
distance
 $t=6h$
diagnostic
 $t=6h$
diagnostic
 $t=6h$
diagnostic
 $t=6h$
diagnostic
 $t=6h$
diagnostic
classes

forcing

Physical consistency

● These constraints (in particular dry air mass constraint!) reduce surface pressure drift

Why is ACE stable?

 $Ai2$

- Architecture made a difference
	- SFNO better than the original 2D FFT based FourCastNet
- "Residual" normalization
	- Account for the different timescales of different variables
- Choice of variables, especially forcing inputs
	- Not surprisingly, insolation is key for seasonal cycle
	- Somewhat more surprisingly, constant topography input also helped

ACE2 AMIP-based Emulators

Submitting soon… preprint will be on arxiv in next 2 weeks

Moving forward: realistic historical SSTs

Now switching two new training dataset:

- 1. ERA5 over 1940-2020
- 2. C96 SHiELD AMIP simulation (two realizations) also 1940- 2020

Training setup is similar to what was previously described, but now add $CO₂$ as input variable and also include some new output variables

ACE-climSST is the model discussed in previous sections (trained on climSST dataset). Fails to get trend when forced with historical SST.

ACE2 has low time-mean AMIP biases on ERA5 and SHiELD

ACE2's biases relative to its target dataset are much smaller than the differences between SHiELD and ERA5.

Response to El Niño SST variability very accurate

a) ACE2-ERA5 RMSE: 0.46 (0.47, 0.48)

d) ERA5

b) ACE2-SHIELD RMSE: 0.48 (0.49, 0.47)

e) SHIELD, RMSE: 0.54

c) ACE-climSST RMSE: 0.64 (0.64, 0.69)

Surface precipitation response to Nino3.4 [mm/day/K]

Climate skill - Tropical cyclone distribution

Caveat: for ERA5, SHiELD and ACE2- ERA5 we are using a cyclone tracking applied to 1° resolution data.

Global # of cyclones is highly tunable based on parameters used for cyclone tracking, so hard to compare directly to IBTrACS.

But differences between ERA5, SHiELD and ACE2-ERA5, as well as basin-to-basin differences, are robust to changes in tracking.

IBTrACS (n/year=101.4)

SHiELD (n/year=87.0)

ERA5 $(n/year=51.4)$

ACE2-ERA5 (n/year= 66.2)

Tropical precip variability

Climate skill - ERA5 polar stratosphere

Zonal mean zonal wind averaged from ~50hPa to TOA

Based on 2001-2010 period

ACE2-SOM (Slab ocean model)

Preprint coming soon.

Coupled modeling: interactive slab ocean

- Generate training/validation data from three 50-year simulations:
	- \circ 1xCO₂ (present-day CO₂ concentration)
	- \circ 2xCO₂ (two times present-day CO₂ concentration)
	- \circ 4xCO₂ (four times present-day CO₂ concentration)
- Train ACE-SOM with $CO₂$ concentration added as an input variable.

Q T_ς h mixed layer deep ocean (reacts slowly, so ignored) F_{net} (predicted by atmosphere model) Source: Absorbed sunlight + infrared Sink: Turbulent heat loss + emitted IR

ACE2-SOM is stable in both in-sample and out-of-sample equilibrium climates

- Results are from five-member initial condition ensembles of 10-year 100 km SHiELD-SOM (our target model) and ACE2-SOM simulations in each climate (20 simulations total per model).
- \bullet ACE2-SOM did not see data from the 3xCO₂ climate during training.

ACE-SOM is stable and accurate in multiple climates

The global warming pattern matches that of the physics-based model, capturing robust features like amplified warming over land.

Out of sample test: Abrupt 4xCO₂ increase

- \bullet ML-controlled fields (all but ocean surface temperature) rapidly shift to the 4xCO₂ regime—clearly unrealistic.
- Ocean surface temperature, aided some by its prescribed thermal inertia, warms more slowly, approximately in accordance with the reference.
- \bullet ACE2-SOM still finds the right steady state, helped by its equilibrium 4xCO₂ training.

 \triangle Ai2

Computational cost

● Training time for each ACE2 model was about **4.5 days on eight 80GB NVIDIA H100s (240 GPU-hours)**

Inference throughput and energy cost

Summary

- We have developed a long-term stable purely ML-based atmospheric model that is suitable for climate prediction
- Faithfully reproduces reference model's climate
	- Tested in climSST, AMIP, and slab-ocean configurations with positive results
	- Captures aspects of forced response to GHG and ocean-atm variability (ENSO)
- Much cheaper/easier to run than reference model itself!

Code, data and model checkpoints are all available! See github.com/ai2cm/ace

Extra Slides

Our training strategy is not perfect

- Climate performance is not entirely robust across random seed or epoch
- A key lesson: track the metric you care about! Throughout training.
- E.g. we do long (up to 5 year) forecasts after every epoch of training
	- \circ Inference is so fast, this typically only adds \sim 10% to total training time

How much data? (more is always better…)

How much data? (more is always better…)

Depends a bit on the variable

 \triangle Ai2

- Stratosphere varies more slowly (~10-30 day radiative relaxation timescale) than the troposphere (~5 day weather timescale)
- A fixed # of years of data will have fewer independent samples of stratosphere

Climate skill - ERA5 tropical cyclone distribution

This would only go in appendix.

Shows that using the true historical SST dataset versus a climatological SST dataset doesn't make a difference for TC statistics.

 $ACE2-ERA5$ (n/year=45.5)

ACE2-ERA5-climSST (n/year=44.6)

Based on 2001-2010 period