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QOutline

* Provide a sense of key focus of climate modelling work done at the CSIR across different time
scales.

« Exemplify the status of components of the seamless climate modelling-based trail
service/prototype development.

« Highlight the current thinking around development for sectors-specific tailored products (e.g.,
energy + health sector relevant examples).

« Share areas where research and development collaborations/partnerships could impact climate

change resilience building sector-specific
o #)CSIR




Climate model science base for the project
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services across timescales

Short range: 1-3 days

Medium range: 3-10 days

Long range > 30 days

Extended range: 10-30 days

Timescale

Short to Medium
range

Seasonal Forecasts

Decadal predictions

Climate Modelling

dependencies

Forcing data

Collaborations/MoUs/cooperation agreements across partner inst

Atmospheric Initial
states reanalysis

Lower layer atmospheric

data temperature layer
Satellite-derived
observations

Atmospheric initial
states,

Sea Surface
temperatures (SSTs)
from

Sea lce

Emissions and

Planning phase

Sea Ice and SST

_Emissions & aerosals
itutions are critical

Collaborating Intuitions/
Projects

?7?

NCEP — Department of
Energy (DOE)

Geophysical Fluid Dynamics
Laboratory(GFDL) data
assimilation system data

(upper layer)

Same as short to medium-
range prediction CCAM
system

University of Pretoria &
North American Multi-Model
Ensemble(NMME)

Syntax F2 (Jumstec)

CMIP5/6

CMIP5/6 models



Research and development focus

Seamless forecasting platform component R&D offerings

Climate modelling * Scientific evidence of climate change - at impact modelling relevant
spatial and temporal resolutions (cover all economic sectors)

Seasonal forecasting * Application of earth system model for seasonal forecasting (AMIP-type

experiments)

* Explore the models’ representation of the drivers of variability
(Collaboration with UP — Prof. Willem Landman group & Prof. Thando
Ndarana).

* Explore avenues for improving model skill

* Develop early warning systems (Present climate services focus is
Water, Energy, Food security, and Health)

Numerical Weather Predictions & Nowcasting * Understand the relationship between ColLs and Thunderstorm
development (Collaboration with UP — Prof. Thando Ndarana’s Group)

Climate Service development * Full-Value-Chain Optimisated Climate User-centric Climate services
development in Africa (FOCUS-Africa): WMO coordinated European
Commission-funded project,
* CSIR & ESKOM energy sector adaptation project,

e CSIR precision agriculture proiect.



Approach to the development of trail — climate services

Service

provider Follow the principles of responsible research:
— Co-defining,
— Co-development,
- — Co-production,
e | — Co-delivery

Research User/

partners Stakeholders of climate services




ging Climate Services to resilience
building




Screening process overview: Map risk to weather and conditions

Drought tendencies Anomalies

Projected change in the drought
(flood) tendencies (i.e., number of
cases exceeding natural variability
per decade) over South Africa for
the period:

e 2035 -2064 &
« 2018 -2044
relative to the 1986-2005 baseline

period, under a Ilow mitigation
scenario (RCP8.5).

(energy sector case)

Annual SPI tendencies

CSIR Smart Places
Climate Prediction System

EnsNean (20156-2244)
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System Risk = Aggregated
unavailable
supply

+
Exceptional
demand

+
employee health
and safety.

Users determine demands
associated with extremes

We apply scenario reduction
techniques will be applied:

 to ensure that the diversity
of tail risk events is examined
to establish the likelihood of
occurrence.
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Figure: (a) Total number of heatwave days, over South Africa under the 1.5° C and

2.0° C Global Warming Levels relative to the 1961-1990 baseline ( shown in (b)). The
10t percentile, median (50t percentile), and 90" percentiles are shown for the ensemble
of 10 downscaled CMIP6 ISMIP3b model projections under 1.5° and 2.0 C GWL
calculated from the SSP5-8.5 scenario.
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* Follow similar steps on the risk-screening tool
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Physical hazards and their compounding
climatic factors

Identify credible events

Map systems under the hazard footprint as
impacted these also depend on characteristics
defining exposure, vulnerability (sensitivity vs
adaptive capacity), and hence risk.



ging seasonal Forecasts trial-service for
operational planning
CCAM-Earth system model



Precipitation forecast
(e.g., DJF 2019 lead-1)
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Model Performance Evaluation (Hindcast): Precipitation

DJF (18-member Ensemble) 2000-2014

JFM (18-member Ensemble) 2000-2014
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* Model simulation approach inspired by approaches used by the Institute for Climate and Society (IRI) - Columbia University -
SAWS collaboration (Dr Asmerom Beraki & Prof. Landman) were directly involved.

 Hindcast for 2000 -2014

* Probabilistic forecasts initialized in Nov (2020,2021,2023) and May for (2020,2021,2022)
» Skill declines significantly with increasing lead times

* No predictive skill for normal category



Precipitation forecast reliability and

Observed Relative Frequency
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Over the escapement precipitation has a
major contribution from mesoscale
convective processes (not representative at
8km resolution).
Observation density is not representative

Forecast Probablllty
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100
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1.0

JFM (18-member Ensemble) 2000-2014

correlation (e.g., DJF lead-1)

The reliability diagram
suggests that the
model is over-
confident for the
Below-Normal

precipitation category.

Almost no skill for the
normal precipitation
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Tasmax forecast Tasmax forecast reliability e.g., DJF lead-1 2000 - 2014)
(e.a.. DJF 2020/21 lead-1) Lo BN o NN y AN
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Tasmax ROC score Tasmin ROC score
(Lead-1) (Lead-1)
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GPC Seasonal forecasts post processing workflow

Multi-model Coarse Non-Gridded Observation Temperature Reanalysis Data
resolution forecast & Precipitation (monthly) (e.g.,ERAD)

Predictand and
predictor
regrinding, CDFt
training and
downscaling (tool:

adjustment

w
S
e
.
o0
=
®
3}
w
c
2
3
(@]

CDFt)
%: c 2 SRS Deterministic and
&8 5 Deterministic Model Ensemble Model probabilistic
o = Model St >
£ 3 § evaluation Forecasts Statistical or ML Evaluation model evaluation
D © o based on i
- 8 0 scores (based ( Mo;lglselectlon, scores
o w a thi monthly model training, Cross-
N on mMonnty Ensemble lidati Deterministic
model outputs i et en and probabilistic
ensemble medians) (Tool: ExCast) _Lp P
Mediane Tool: CDFt forecasts
adlans — (rolling seasons)

Monthly Temperature and
Precipitation anomalies forecasts

season
tailored

Rolling season Temperature, precipitation
and Drought indices forecasts

The multi-model seasonal forecast downscaling, cross validation, model training,
evaluation and forecasting workflow. The workflow shows steps for the monthly
deterministic forecasts as well probabilistic forecast



Precipitation seasonal forecast evaluation (raw data)

Initialized in May

Approach using XCast (A python climate forecasting toolkit): Kyle and Nachiketa (2022)
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Mauritius Case Study: Downscaled probabilistic forecast
evaluation: testing different approaches

month

month

Prgbab\hstm forecast skill improved by combining
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Precipitation probabilistic seasonal forecast
Initialized in May 2024

Approach using XCast (A python climate forecasting toolkit): Kyle and Nachiketa (2022)
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Probabilistic seasonal forecast for JJA , with a May 2024 initialization



Challenges and opportunities

System is a good candidate for improving an understanding of the ability of earth system models to respond or
representatively of divers of variability in the Southern hemisphere.

Seasonal trailered services could be expanded to include probabilistic for cast with August initialization (relevant for
SACOF) in addition to November and May ones.

Maintenance of the system needs investment in capacity.
Data storage and computing infrastructure bottlenecks.

At seasonal time scales unavailability of forcing data introduces hindcast—forecast experiment inconsistencies at risk
of decline in model skill.



veather forecasts to climate extremes resilience
building



Research and development on proliferation and uptake of

weather forecasts
E.g., the recent heatwave (25/11/2023)

E.g., CCAM forecast: Tropical cyclone Freddy
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Health Group of the CSIR

Stimulate conversations
around the use and uptake of
tailored

weather forecasts.

Verify the forecast of extremes
and their usefulness in
inducing desired behavior and
operational decisions.

Research on circulation
patterns
(leading to extremes).

Integration of climate
information to different
delivery methods beyond well-
established ones.

Promote research around
impact-based forecast and its
tailoring.



Way forward

We would like to bring more model forecast outputs at varying
resolutions to better understand uncertainty in the predictions.

Produce 4 km climate models to resolve convective processes (to
explore convective systems).

Explore processes that drive climate variability and their teleconnection.

Engage with more research partner institutions to develop tailored
services.

Continue the seamless climate predictions including seasonal forecast
evaluation.

/
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