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WGSIP Ocean Prediction project

Obijectives

Systematically evaluate prediction capabilities for ocean variables besides temporal mean SST
across time scales and for multiple climate prediction systems

Assess performance of individual prediction systems in relation to their initialization, resolution,
etc.

Assess multi-model performance gains

Assess properties and suitability of different verification datasets, utility of multi-product
verification

Assess sources of predictability and ability of models to represent them

Facilitate useful real-time forecasting of ocean properties having societal impacts

Main focuses: marine heat waves (MHW), mixed-layer depth (MLD), sea surface height (SSH)
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M HW p re d iCtio n https://www.climate.rocksea.org
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Can daily SST data e.g. from C3 seasonal systems enable skillful ] marine heatwave
probabilistic forecasts of integrated heat wave severity, vs
probability of heat wave occurrence methodology based on
monthly SST? !

Marine Heatwave (MHW) Forecast [Jacox et al., 2022] m
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Elise Olson and Bill Merryfield at CCCma working on methodologies for this
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https://psl.noaa.gov/marine-heatwaves
https://www.climate.rocksea.org/

Seasonal Predictability of SST-based Marine Heatwaves (MWHs) over the Kuroshio Extension Region

Contributed from Hong-Li Ren (CMA): Zhou Ren* et al., Ocean Modelling 2024

® The MME mean of C3S models can improve prediction skills of KE-SSTAs and KE-MHWs,
but they are difficult to accurately predict KE-MHWs.
® Major predictability sources of KE-SSTAs and KE-MHWs are from PDO, IPO, and ENSO.

Comparison of KE-SSTA index and KE-MHW index between C3S models
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https://doi.org/10.1016/j.ocemod.2024.102361

MLD prediction

MLD important for ecosystems, atmosphere-ocean interactions
Limited agreement between potential verification products —»

Assessed skill of CHFP seasonal forecast systems vs 7
verification products & combinations thereof

Multi-product verification consistently yields higher skill

Bill Merryfield & Woosung Lee, CCCma
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WCRP OSC 2023 presentation “Prospects for seasonal
prediction of ocean mixed-layer depth”, paper in progress

MLD from C3S seasonal systems offers additional resource
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Multi-product verification for MLD vs SSH

Even though SSH is relatively well observed, skill is enhanced by multi-product verification, much as for MLD

lllustration using CHFP models and available MLD, SSH analyses: consider mean ordinal ranks of anomaly
correlation and RMSE for all combinations of models and individual + multi-verification products at lead times

of 0-6 months:
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Ocean prediction poster cluster at 0SC23
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WGSIP Temperature Trends project

observed

-
A ; trend <" forecast
: bias

Obijectives

» Assess long-term global and regional
temperature trend errors as a function
of lead time across many seasonal
prediction systems

Temperature

» Assess extent to which temperature
trend errors impact temperature
prediction skill

* Relate trend errors to radiative forcings
and initialization methodologies

« Develop a synthesis of previous & new
results for the community

forecast bias*

*in units of standard

T anomaly* deviations of the
forecast distribution



NMME prediction of above/below
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Is above normal category overpredicted in seasonal forecasts?

Observed frequency of above/below
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Frequency of prediction of above-average (upper tercile) and below-average (lower tercile)
monthly mean land surface temperature anomaly in North America during the NMME real-time
period of 2011-20. NMME prediction is shown for a 1.5-month lead and is the multimodel
ensemble-mean anomaly of eight equally weighted models.




Is above normal category overpredicted in seasonal forecasts?

« This supposed discrepancy is suggested to be an overly strong A) NMME lead-1 1982-2010

t2 trend
NMME temperature trend over much of the US — on S Ty

« Is an apparent flaw in this reasoning the consideration of ensemble
means rather than individual ensemble members?
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For discussion

Is there an impetus for ocean prediction activity to continue?

Same for temperature trends (viewed as culminating with review/synthesis paper)
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