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Forecast skill estimate: Relative skill iIs based on

differing forecast averaging period.
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predictability comes from initial
atmospheric conditions

S2S PREDICTIONS
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SEASONAL OUTLOOKS
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Source: White et al. 2017, DOI: 10.1002/met.1654
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Climate Prediction
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Figure 1. A schematic representation of many of the atmospheric phenomena and numerical modeling considerations needed to make accurate forecasts in the

subseasonal-to-seasonal time scale.
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(a) WEATHER FORECASTS
predictability comes from initial
atmospheric conditions

b oo o i Time averaging increases the signal to noise

landisealios conditions. he atratoepher ratio enough to obtain reliable forecasts.
excellent and other sources

SEASONAL OUTLOOKS
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= good sea-surface temperature conditions;
(% accuracy is dependent on ENSO state
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In order to beat down the noise, what kind of averaging is needed is decided a priori.
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Goals:

1. Study the smooth transition of predictability from weather to subseasonal lead times and that from
subseasonal to seasonal lead times using GEOS-S2S-2 retrospective forecasts

2. Determine how the predictability may vary with state or regime using appropriate metrics.

3. Develop a metric that can utilize windows of opportunity.
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Predictable Component Analysis

Forecast F = Signal + Noise
(space x time (t))

Decompose total predictability into components that optimize predictability.
Predictable Component Analysis (PrCA) finds linear combinations
maximizes predictability (signal-to-noise ratio) of ensemble forecasts.

» Distinguish the signal in the forecasts.

» Determine the evolution of signal (measured by the F-value).

» Signal (S) = variance of ensemble means.

» Noise (N) = variance about the ensemble means.
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Predictable Component Analysis

PrCA identifies patterns and coefficients (variates) with maximum signal-to-noise (S/N) ratio.

G
F=E6—§

N

Optimization -> Generalized Eigenvalue Problem:

Y. g = A\ Xy g (where, A= S/N)
signal S/N  noise
covariance ratio covariance

» Eigenvalues A gives maximized F values (S/N ratios).

» Eigenvalues are ordered in descending orderasF,=2F, = ........ = Fy

» 1st maximizes S/N, 2nd maximizes S/N subject to being uncorrelated with the 1st, and so on.
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PrCA applied to GEOS S2S-2 reforecasts

» 1999 — 2024 : 25 winters (December January February)
» Variable : 2m Temperature anomalies (lead-time dependent)
» Forecasts were initialized 5 day apart: 18 start dates
» Number of ensembles: 4
» Total number of conditions: 25 years * 18 start dates = 450
» Region: Contiguous U.S

(Missing data: 2017)
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Most Predictable Component

Lead time 5-day

S$25-2 Forecasts 2m-Temp; 5 target; E= 4; 1999-2024

Predictable Component 1 10EOFs 38% Predictable Component 2 10EOFs 19%
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Most Predictable Component

Lead time 25-day

$25-2 Forecasts 2m-Temp; 25 target; E= 4; 1999-2024
Predictable Component 1 10EOFs 9.1%

B mﬁ

Predictable Component 2 10EOFs 17%
I H:ﬂ;“ :I

Higher variance
may not necessarily
lead to higher S/N
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Maximized F-Ratios Maximized F-Ratios

Maximized F-Ratios
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Maximized Signal-to-Noise Ratios

at various forecast lead times

Maximized F-Ratios for Daily S25Sv2 Forecasts
10EOFs; 2m-Temp; 1 day lead; E= 4; 1999-2024
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Summary

S/N ratio is detected at every grid point.

The developed framework will be applied to GEOS-S2S-3 forecast dataset.

PrCA can be applied to forecasts to detect predictable modes in forecasts.

PrCA will be applied to different regions (e.g. Tropics, Europe, etc.).

PrCA can be applied on decadal timescales as well.

Contact: priyanka.yadav@nasa.gov
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